हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find s∂z∂s and t∂z∂t at s = t = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1

योग

उत्तर

`(delz)/(del"z") = x 1/(1 + (xy)^2) xx y + tan^-1 (xy)`

`(xy)/(1 + x^2y^2) + tan^-1 (xy)`

`(delz)/(dely) = x 1/(1 + (xy)^2) xx x`

= `x^2/(1 + x^2y^2)`

`(delx)/(dely) = 0, (dely)/(del"s") = "e"^"t", (delx)/(del"t") = 2"t", (dely)/(del"t") = "s"  "e"^"t"`

`(delz)/(del"s")  = (delz)/(del"s") + (delz)/(dely) (dely)/(del"s")`

`(delz)/(del"s") = ([(xy)/( + x^2y^2)]  + tan^-1 (xy)) xx 0 + x^2/(1 + x^2y^2) xx "e"^"t"`

= `"t"^4/(1 + "t"^2"s"^2"e"^(2"t")) "e"^"t" = ("e"^"t" "t"^4)/(1 + "t"^2"s"^2"e"^(2"t"))`

`(delz)/(del"t")  = (delz)/(del"x") (delx)/(delt) + (delz)/(del"y") (dely)/(del"t")`

= `[(xy)/(1 + (xy)^2) + tan^-1(xy)] xx 2"t" + [x^2/(1 + (xy)^2)] xx "se"^"t"`

= `[("t"^2"se"^"t")/(1 + "t"^2"s"^2"e"^(2"t")) + tan^-1("t"^2"se"^"t")] xx 2"t" + ["t"^4/(1 + "t"^2"s"^2"e"^(2"t"))]"se"^"t"`

As s = t = 1,

`(delz)/(del"s") = "e"/(1 + "e"^2)`

`(delz)/(del"t") = (3"e")/(1 + "e"^2) + 2tan^-1("e")`

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.6 [पृष्ठ ८४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 6 | पृष्ठ ८४

संबंधित प्रश्न

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×