हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If w(x, y, z) = log(5x3y4+7y2xz4-75y3zz4x2+y2), find wwwx∂w∂x+y∂w∂y+z∂w∂z - Mathematics

Advertisements
Advertisements

प्रश्न

If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`

योग

उत्तर

w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`

Convert into exponential function

ew = `((5x^3y^4 + 7y^2xz^4  75y^3z^4)/(x^2 + y^2))` = f(x, y)

`"f"(lambdax, lambday) = (5lambda^3x^3lambda^4y^4 + 7lambda^2y^lambdaxlambda^4z^4 - 75lambda^3y^3lambda^4z^4)/(lambda^2x^2 + lambda^2y^2)`

= `(lambda^7(5x^3y^4 + 7y^2xz^4 - 75y^3y^4))/(lambda^2(x^2 + y^2))`

f is a homogeneous function of degree 5

By Euler's Theorem,

`x (del"f")/(delx) + y (del"f")/(dely) + z (del"f")/(delz)` = 5f

`x del/(delx) + "e"^"w" + y del/(dely) "e"^"w" + z del/(delz) "e"^"w"` = 5ew

`"e"^"w" x (del"w")/(delx) + "e"^"w" y (del"w")/(dely) + "e"^"w" z (del"w")/(delz)` = 5ew

Divided by ew

`x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz) = (5"e"^"w")/"e"^"w"`

`x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)` = 5

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.7 [पृष्ठ ८६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.7 | Q 6 | पृष्ठ ८६

संबंधित प्रश्न

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×