हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find Usut∂U∂s,∂u∂t and evaluate them at s = t = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1

योग

उत्तर

U(x, y) = ex sin y where x = st2, y = s2t

`(del"U")/(del"s") = (del"U")/(delx) (delx)/(del"s") + (del"U")/(dely) (dely)/(del"s")`

`(del"U")/(delx) = "e"^x siny, (delx)/(del"t") = 2"st", (delx)/(del"s") = "t"^2`

`(del"U")/(dely) = "e"^x cosy, (dely)/(del"t") = "s"^2, (dely)/(del"s") = 2"st"`

`(del"U")/(del"s") = "e"^x siny "t"^2 + "e"^x cosy (2"st")`

= est2 sin (s2t) t2 + est2 cos(s2t) 2st

= est2 [t2 sin (s2t) + 2st cos (s2t)]

= t ex [t sin(s2t) + 2s cos (s2t)]

`(del"U")/(del"t")` = ex sin y 2st + ex cos y (s2)

= est2 sin(s2t) 2st + est2 cos(s2t) s2

= s est2 [2t sin (s2t) + s cos(s2t)]

At s = t = 1

`(del"U")/(del"s")` e[sin(1) + 2 cos (1)]

= e[sin(1) + 2 cos (1)]

`(del"U")/(del"t")` = e[2 sin(1) + cos (1)]

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.6 [पृष्ठ ८४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 7 | पृष्ठ ८४

संबंधित प्रश्न

Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×