English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find ddtdwdt - Mathematics

Advertisements
Advertisements

Question

If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`

Sum

Solution

w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t

`("d"w)/"dt" = ("d"w)/("d"x) ("d"x)/"dt" + ("d"w)/("d"y) ("d"y)/"dt" + ("d"w)/"dt" + ("d"w)/("d"z) ("d"z)/"dt"`

`("d"w)/("d"x) = 2x, ("d"x)/"dt" = "e"^"t"`

`("d"w)/("d"y) = 2y, ("d"y)/"dt" = "e"^"t" sin"t" + "e"^"t" cos"t"`

`("d"w)/("d"z) = 2z, ("d"z)/"dt" = "e"^"t" cos"t" - "e"^"t" sin"t"`

`("d"w)/"dt"` = 2x et + 2y (et sin t + et cos t) + 2z (et cos t – et sin t)

= 2 e2t + 2 (et sin t) (et sin t + et cos t) + 2 (et cos t) (et cos t – et sin t)

= 2 e2t [1 + sin²t + sin t cos t + cos²t – sin t cos t]

= 2 e2t (1 + sin²t + cos²t)  ......[∵ sin²t + cos²t = 1]

= 2 e²t (1 + 1)

= 4 e2t

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.6 [Page 84]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 3 | Page 84

RELATED QUESTIONS

If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×