Advertisements
Advertisements
Question
If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`
Solution
w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t
`("d"w)/"dt" = ("d"w)/("d"x) ("d"x)/"dt" + ("d"w)/("d"y) ("d"y)/"dt" + ("d"w)/"dt" + ("d"w)/("d"z) ("d"z)/"dt"`
`("d"w)/("d"x) = 2x, ("d"x)/"dt" = "e"^"t"`
`("d"w)/("d"y) = 2y, ("d"y)/"dt" = "e"^"t" sin"t" + "e"^"t" cos"t"`
`("d"w)/("d"z) = 2z, ("d"z)/"dt" = "e"^"t" cos"t" - "e"^"t" sin"t"`
`("d"w)/"dt"` = 2x et + 2y (et sin t + et cos t) + 2z (et cos t – et sin t)
= 2 e2t + 2 (et sin t) (et sin t + et cos t) + 2 (et cos t) (et cos t – et sin t)
= 2 e2t [1 + sin²t + sin t cos t + cos²t – sin t cos t]
= 2 e2t (1 + sin²t + cos²t) ......[∵ sin²t + cos²t = 1]
= 2 e²t (1 + 1)
= 4 e2t
APPEARS IN
RELATED QUESTIONS
If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0
Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`
Let U(x, y, z) = xyz, x = e–t, y = e–t cos t, z – sin t, t ∈ R, find `"dU"/"dt"`
Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0
Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1
Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)`
In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.
g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`
Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f
If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`
If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`
Choose the correct alternative:
If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to
Choose the correct alternative:
If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to
Choose the correct alternative:
If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to
Choose the correct alternative:
If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is