मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Prove that g(x, y) = xlog(yx) is homogeneous What is the degree? Verify Eulers Theorem for g - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g

बेरीज

उत्तर

g(x, y) = `x log(y/x)`

g(tx, ty) = `"t"x  log(("t"y)/("t"x))`

g is a homogeneous function of degree 1.

∴ By Euler’s Theorem,

`x  (del"g")/(delx) + y (del"g")/(dely)` = g

Verification:

g(x, y) = `xlog(y/x)`

= `x (logy - log x)`

= `x log y - x log x`

`(del"g")/(delx) = logy - logx - x xx 1/x`

= `log y - log x - 1`

`x (del"g")/(delx) = x log y - x log x - x`

`(del"")/(dely) = x xx 1/y`

`y (delg")/(dely)` = x

`x (del"g")/(delx) + y (del"g")/(dely) = x log y - x log x - x + x`

= `x log (y/x)`

= g

`x  (del"g")/(delx) + y (del"g")/(dely)` = g

Hence verified.

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.7 [पृष्ठ ८६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.7 | Q 3 | पृष्ठ ८६

संबंधित प्रश्‍न

Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let U(x, y) = ex sin y where x = st2, y = s2t, s, t ∈ R. Find `(del"U")/(del"s"), (del"u")/(del"t")` and evaluate them at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If w(x, y) = xy, x > 0, then `(del"w")/(delx)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Choose the correct alternative:

If f(x, y, z) = xy + yz + zx, then fx – fz is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×