English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find WuWv∂W∂u,∂W∂v and evaluate them at (12,1) - Mathematics

Advertisements
Advertisements

Question

W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`

Sum

Solution

`(del"W")/(delx) = y + z, (delx)/(del"u") = 1, (delx)/(del"v") = - 1`

`(del"W")/(dely) = x + z, (dely)/(delu) = "v" = (dely)/(delv) = "u"`

`(del"W")/(del"z") = y + x, (delz)/(del"u") = 1, (delz)/(delv) = 1`

`(del"W")/(delu) = (del"W")/(delx) (delx)/(del"u") + (del"W")/(dely) (dely)/(del"u") + (del"W")/(delz) (delz)/(del"u")`

= (y + z) × 1 + (x + z) × v + (y + x) × 1

= uv + u + v + (u – v + u + v) v+ (uv + u – v)

= uv + u + v + uv + uv + uv + u – v

= 4 uv + 2u

`(delw)/(delu) (1/2, 1) = 4 xx 1/2 xx 1  + 2 xx 1/2`

= 2 + 1

= 3

`(del"w")/(delv) = (del"W")/(delx) (delx)/(del"v") + (del"W")/(dely) (dely)/(del"v") + (del"W")/(delz) (delz)/(del"v")`

= (y + z) (– 1) + (x + z) u + (y + x) × 1

= – y – z + xu + zu + y + x

= –u – v + (u – v) u + (u + v) u + u – v

= – u – v + u2 – vu + u2 + vu + u – v

= 2u2 – 2v

`(del"W")/(delv) (1/2, 1) = 2 xx 1/4 - 2 xx 1`

= `1/2 - 2`

= `- 3/2`

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.6 [Page 84]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.6 | Q 9 | Page 84

RELATED QUESTIONS

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let U(x, y, z) = xyz, x = e–t, y = et cos t, z – sin t, t ∈ R, find `"dU"/"dt"`


Let z(x, y) = x tan–1(xy), x = t², y = s et, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(del"t")` at s = t = 1


Let z(x, y) = x3 – 3x2y3 where x = set, y = se–t, s, t ∈ R. Find `(delz)/(del"s")` and `(delz)/(delt)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If v(x, y) = `log((x^2 + y^2)/(x + y))`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 1`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×