हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

"Monochromatic Light Should Be Used to Produce Pure Spectrum". Comment on this Statement. - Physics

Advertisements
Advertisements

प्रश्न

"Monochromatic light should be used to produce pure spectrum". Comment on this statement.

टिप्पणी लिखिए

उत्तर

No, monochromatic light cannot be used to produce a pure spectrum. A spectrum is produced when a light of different wavelengths is deviated through different angles and gets separated. Monochromatic light, on the other hand, has a single wavelength.

shaalaa.com
Refraction of Monochromatic Light
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Dispersion and Spectra - Short Answers [पृष्ठ ४४१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 20 Dispersion and Spectra
Short Answers | Q 4 | पृष्ठ ४४१

संबंधित प्रश्न

When monochromatic light is incident on a surface separating two media, the reflected and refracted light both have the same frequency as the incident frequency.


'Two independent monochromatic sources of light cannot produce a sustained interference pattern'. Give reason.


Two monochromatic rays of light are incident normally on the face AB of an isosceles right-angled prism ABC. The refractive indices of the glass prism for the two rays '1' and '2' are respectively 1.3 and 1.5. Trace the path of these rays after entering the prism.


Two monochromatic rays of light are incident normally on the face AB of an isosceles right-angled prism ABC. The refractive indices of the glass prism for the two rays '1' and '2' are respectively 1.35 and 1.45. Trace the path of these rays after entering the prism.


In the wave picture of light, the intensity of light is determined by the square of the amplitude of the wave. What determines the intensity in the photon picture of light?


What kind of fringes do you expect to observe if white light is used instead of monochromatic light?


State the essential conditions for diffraction of light ?


Monochromatic light of frequency 5.0 × 1014 Hz is produced by a laser. The power emitted is 3.0 × 10–3 W. Estimate the number of photons emitted per second on an average by the source ?


 State Huygen’s principle. Using this principle explain how a diffraction pattern is obtained on a screen due to a narrow slit on which a narrow beam coming from a `=> n = (vlamda)/(vlamda_omega)`monochromatic source of light is incident normally.


The following figure shows three equidistant slits being illuminated by a monochromatic parallel beam of light. Let \[B P_0  - A P_0  = \lambda/3\text{ and }D >  > \lambda.\] (a) Show that in this case \[d = \sqrt{2\lambda D/3}.\] (b) Show that the intensity at P0 is three times the intensity due to any of the three slits individually.


Find the angle of incidence at which a ray of monochromatic light should be incident on the first surface AB of a regular glass prism ABC so that the emergent ray grazes the adjacent surface AC. (Refractive Index of glass = 1 .56)


Using the monochromatic light of the wavelength in the experimental set-up of the diffraction pattern as well as in the interference pattern where the slit separation is 1 mm, 10 interference fringes are found to be within the central maximum of the diffraction pattern. Determine the width of the single slit, if the screen is kept at the same distance from the slit in the two cases.


A monochromatic ray of light falls on a regular prism under minimum deviation condition. What is the relation between angle of incidence and angle of emergence?


Assertion(A): The photoelectrons produced by a monochromatic light beam incident on a metal surface have a spread in their kinetic energies.

Reason(R): The energy of electrons emitted from inside the metal surface, is lost in collision with the other atoms in the metal.


A narrow slit is illuminated by a parallel beam of monochromatic light of wavelength λ equal to 6000 Å and the angular width of the central maximum in the resulting diffraction pattern is measured. When the slit is next illuminated by light of wavelength λ’, the angular width decreases by 30%. Calculate the value of the wavelength λ’.


Monochromatic light of wavelength 600 nm is incident from the air on a water surface. The refractive index of water is 1.33. Find the

  1. wavelength,
  2. frequency and
  3. speed, of reflected and refracted light.

Monochromatic light of wavelength 396 nm is incident on the surface of a metal whose work function is 1.125 eV. Calculate:

  1. the energy of an incident photon in eV.
  2. the maximum kinetic energy of photoelectrons in eV.

The Figure below shows a ray of monochromatic light LM incident on the first surface AB of a regular (equilateral) glass prism ABC. The emergent ray grazes the adjacent surface AC. Calculate the angle of incidence. (Refractive Index of glass = 1.5)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×