Advertisements
Advertisements
प्रश्न
Multiply and then evaluate:
(4x + y) and (x – 2y); when x = 2 and y = 1.
उत्तर
(4x + y) × (x − 2y)
= 4x (x − 2y) + y (x − 2y)
= 4x2 − 8xy + xy − 2y2
= 4x2 − 7xy − 2y2
Verification:
When x = 2, y = 1
L.H.S. = (4x + y) (x − 2y)
= (4 × 2 + 1) (2 − 2 × 1)
= (8 + 1) (2 − 2)
= 9 × 0
= 0
R.H.S. = 4x2 − 7xy − 2y2
= 4 (2)2 − 7 × 2 × 1 − 2 (1)2
= 4 × 4 − 14 − 2
= 16 − 16
= 0
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
xy − bd = ..............
Find the value of 4pq × 2r, when p = 5, q = 3 and r = 1/2
If a = 3, b = 0, c = 2 and d = 1, find the value of 6a − 3b − 4c − 2d
If x = 2, y = 5 and z = 4, find the value of the following:
zx
If x = 2, y = 5 and z = 4, find the value of the following:
`("x"^2"y"^2"z"^2)/"xz"`
Evaluate:
35b – (16b + 9b)
Simplify:
2m − (3m + 2n − 6n)
Fill in the blank:
2t + r − p − q + s = 2t + r − (..................)
If P = − 12x2 – 10xy + 5y2, Q = 7x2 + 6xy + 2y2, and R = 5x2 + 2xy + 4y2 ; find P + Q + R
Simplify:
6 {3x – 8 (5x – 10)}