Advertisements
Advertisements
Question
Multiply and then evaluate:
(4x + y) and (x – 2y); when x = 2 and y = 1.
Solution
(4x + y) × (x − 2y)
= 4x (x − 2y) + y (x − 2y)
= 4x2 − 8xy + xy − 2y2
= 4x2 − 7xy − 2y2
Verification:
When x = 2, y = 1
L.H.S. = (4x + y) (x − 2y)
= (4 × 2 + 1) (2 − 2 × 1)
= (8 + 1) (2 − 2)
= 9 × 0
= 0
R.H.S. = 4x2 − 7xy − 2y2
= 4 (2)2 − 7 × 2 × 1 − 2 (1)2
= 4 × 4 − 14 − 2
= 16 − 16
= 0
∴ L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
If a = 3, b = 0, c = 2 and d = 1, find the value of 6a − 3b − 4c − 2d
If a = 3, b = 0, c = 2 and d = 1, find the value of ab − bc + cd − da
If a = 3, b = 0, c = 2 and d = 1, find the value of a2 + 2b2 − 3c2
Show that the value of x3 – 8x2 + 12x – 5 is zero, when x = 1.
Simplify:
10m + (4n − 3n) − 5n
Simplify:
3x + (8x − 5x) − (7x − x)
Simplify:
`"a"-(2"a"-overline(4"a"+3"a"))`
Simplify:
3x − [5y − {6y + 2 (10y − x)}]
Fill in the blank:
3m − 2n + 6 = 6 − (............)
If x = 3, y = 2 and z = 1; find the value of xy + y2z – 4zx