Advertisements
Advertisements
प्रश्न
Multiply and then verify :
−3x2y2 and (x – 2y) for x = 1 and y = 2.
उत्तर
(−3x2y2) × (x – 2y)
= (−3x2y2) × (x) − (−3x2y2)(2y)
= −3x2y2 + 6x2y3
= 6x2y3 − 3x3y2
For x = 1 and y = 2
(−3x2y2) × (x – 2y)
= (−3 × 12 × 22) × (1 − 2 × 2)
= (6 × 1 × 8) − (3 × 1 × 4)
= 48 − 12
= 36
∴ For x = 1 and y = 2, it is verified that,
(−3x2y2) × (x – 2y)
= 6x2y3 − 3x3y2
APPEARS IN
संबंधित प्रश्न
Simplify : (7x – 8) (3x + 2)
Simplify : (3y + 4z) (3y – 4z) + (2y + 7z) (y + z)
Find the value of (3x3) × (-5xy2) × (2x2yz3) for x = 1, y = 2 and z = 3.
Evaluate (x5) × (3x2) × (-2x) for x = 1.
If x = 2 and y = 1; find the value of (−4x2y3) × (−5x2y5).
Evaluate: (3x – 2)(x + 5) for x = 2.
Evaluate: xy2(x – 5y) + 1 for x = 2 and y = 1.
Evaluate: 2x(3x – 5) – 5(x – 2) – 18 for x = 2.
Multiply: 2x2 – 4x + 5 by x2 + 3x – 7
Multiply: (ab – 1) (3 – 2ab)