Advertisements
Advertisements
प्रश्न
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
3.5 | 0 | 105 | ______ |
उत्तर
a | d | n | an |
3.5 | 0 | 105 | 3.5 |
स्पष्टीकरण:
a = 3.5, d = 0, n = 105, an = ?
हम जानते हैं कि,
an = a + (n - 1) d
an = 3.5 + (105 - 1) 0
an = 3.5 + 104 × 0
an = 3.5
अतः, an = 3.5
APPEARS IN
संबंधित प्रश्न
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1.25, d = -0.25
निम्नलिखित समांतर श्रेढि में, रिक्त खान (box) के पद को ज्ञात कीजिए।
2, `square`, 26
AP.: 3, 8, 13, 18, ... का कौन सा पद 78 है?
क्या A.P., 11, 8, 5, 2 ... का एक पद -150 है? क्यों?
n के किस मान के लिए, दोनों समांतर श्रेढियों 63, 65, 67,… और 3, 10, 17,… के nवें पद बराबर होंगे?
किसी A.P. के चौथे और 8वें पदों का योग 24 है तथा छठे और 10वें पदों का योग 44 है। इस A.P. के प्रथम तीन पद ज्ञात कीजिए।
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 3 + 4n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
यदि किसी A.P. के प्रथम n पदों का योग 4n - n2 है, तो इसका प्रथम पद (अर्थात् S1) क्या है? प्रथम दो पदों का योग क्या है?दूसरा पद क्या है? इसी प्रकार, तीसरे, 10वें और nवें पद ज्ञात कीजिए।
एक पंक्ति के मकानों को क्रमागत रूप से संख्या 1 से 49 तक अंकित किया गया है। दर्शाइए कि x का एक ऐसा मान है कि x से अंकित मकान से पहले के मकानों की संख्याओं का योग उसके बाद वाले मकानों की संख्याओं के योग के बराबर है। x का मान ज्ञात कीजिए।
[संकेत: Sx - 1 = S49 - Sx है।]
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `sqrt(2)`, d = `1/sqrt(2)`