Advertisements
Advertisements
प्रश्न
'O' केंद्र असलेल्या वर्तुळाला P या बाह्यबिंदूतून AP ही A बिंदूपाशी स्पर्शिका काढली आहे. जर OP = 12 सेमी व ∠OPA = 30°, तर वर्तुळाची त्रिज्या ______ असेल.
विकल्प
12 सेमी
6`sqrt3` सेमी
6 सेमी
12`sqrt3` सेमी
उत्तर
'O' केंद्र असलेल्या वर्तुळाला P या बाह्यबिंदूतून AP ही A बिंदूपाशी स्पर्शिका काढली आहे. जर OP = 12 सेमी व ∠OPA = 30°, तर वर्तुळाची त्रिज्या 6 सेमी असेल.
स्पष्टीकरण:
ΔAOP मध्ये, sin30° = `"AO"/"OP"`
∴ `1/2 = "AO"/12`
∴ AO = 6 सेमी
APPEARS IN
संबंधित प्रश्न
त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.
एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?
आकृती मध्ये, बिंदू O वर्तुळकेंद्र आणि रेख AB व रेख AC हे स्पर्शिकाखंड आहेत. जर वर्तुळाची त्रिज्या r असेल आणि l(AB) = r असेल, तर `square`ABOC हा चौरस होतो, हे दाखवा.
आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.
(1) MT = किती?
(2) MN = किती?
(3) ∠NSM = किती?
आकृती मध्ये, केंद्र C असलेल्या वर्तुळाचा रेख AB हा व्यास आहे. वर्तुळाची स्पर्शिका PQ वर्तुळाला बिंदू T मध्ये स्पर्श करते. रेख AP ⊥ रेषा PQ आणि रेख BQ ⊥ रेषा PQ. तर सिद्ध करा - रेख CP ≅ रेख CQ.
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.
पक्ष: `square`
साध्य: `square`
सिद्धता:
त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.
ΔPAD आणि ΔQAD यांमध्ये,
बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]
बाजू AD ≅ बाजू AD ...............[`square`]
∠APD ≅ ∠AQD = 90° ............[स्पर्शिका-त्रिज्या प्रमेय]
∴ ΔPAD ≅ ΔQAD ..................[`square`]
∴ बाजू DP ≅ बाजू DQ ...............[`square`]
आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
सिद्धता:
ΔRMO आणि ΔRNO यांमध्ये,
∠RMO ≅ ∠RNO = 90° ...............[`square`]
कर्ण OR ≅ कर्ण OR …..............[`square`]
बाजू OM ≅ बाजू [`square`] ..........…[एकाच वर्तुळाच्या त्रिज्या]
∴ ΔRMO ≅ ΔRNO ….......[`square`]
∠MOR ≅ ∠NOR
तसेच, ∠MRO ≅ [`square`] ......................[`square`]
∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.
खालील प्रमेय सिद्ध करा:
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात.
दिलेल्या आकृतीत, Q केंद्र असलेल्या वर्तुळाच्या रेख PM आणि PN स्पर्शिका आहेत. जर ∠MPN = 40°, तर ∠MQN चे माप काढा.
आकृतीमध्ये, O हा वर्तुळाचा केंद्रबिंदू आहे. रेषा AQ ही स्पर्शिका आहे. जर OP = 3 आणि m(कंस PM) = 120° असेल, तर AP ची लांबी काढा?