Advertisements
Advertisements
प्रश्न
आकृती मध्ये, बिंदू O वर्तुळकेंद्र आणि रेख AB व रेख AC हे स्पर्शिकाखंड आहेत. जर वर्तुळाची त्रिज्या r असेल आणि l(AB) = r असेल, तर `square`ABOC हा चौरस होतो, हे दाखवा.
उत्तर
पक्ष: O हे वर्तुळकेंद्र आहे.
रेख AB व रेख AC हे स्पर्शिकाखंड आहेत.
त्रिज्या = r, l(AB) = r
साध्य: `square`ABOC हा चौरस होतो.
रचना: रेख OB व रेख OC काढा.
सिद्धता:
रेख AB आणि रेख AC हे स्पर्शिकाखंड आहेत. ....[पक्ष]
∴ AB = AC ......[स्पर्शिकाखंडाचे प्रमेय]
परंतु, AB = r .....[पक्ष]
∴ AB = AC = r ...(i)
तसेच, OB = OC = r ......(ii) [एकाच वर्तुळाच्या त्रिज्या]
∴ AB = AC = OB = OC .....[(i) व (ii) वरून]
∴ `square`ABOC हा समभुज चौकोन आहे.
∴ ∠OBA = 90° ......[स्पर्शिका-त्रिज्या प्रमेय]
∴ `square`ABOC हा चौरस आहे. ......[समभुज चौकोनाचा एक कोन काटकोन असेल, तर तो चौरस असतो.]
APPEARS IN
संबंधित प्रश्न
सोबतच्या आकृतीत, केंद्र C असलेल्या वर्तुळाची त्रिज्या 6 सेमी आहे. रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते. या माहितीवरून खालील प्रश्नांची उत्तरे द्या.
(1) ∠CAB चे माप किती अंश आहे? का?
(2) बिंदू C हा रेषा AB पासून किती अंतरावर आहे? का?
(3) जर d(A,B) = 6 सेमी, तर d(B,C) काढा.
(4) ∠ABC चे माप किती अंश आहे? का?
आकृती मध्ये, केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात. बिंदू R मधून जाणारी रेषा त्या वर्तुळांना अनुक्रमे बिंदू A व बिंदू B मध्ये छेदते. तर -
(1) रेख AP || रेख BQ हे सिद्ध करा.
(2) ΔAPR ~ ΔRQB हे सिद्ध करा.
(3) जर ∠PAR चे माप 35° असेल, तर ∠RQB चे माप ठरवा.
एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?
आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.
(1) MT = किती?
(2) MN = किती?
(3) ∠NSM = किती?
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
दिलेल्या आकृतीत, केंद्र D असलेले वर्तुळ ∠ACB च्या बाजूंना बिंदू A आणि B मध्ये स्पर्श करते. जर ∠ACB = 52°, तर ∠ADB चे माप काढा.
आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
सिद्धता:
ΔRMO आणि ΔRNO यांमध्ये,
∠RMO ≅ ∠RNO = 90° ...............[`square`]
कर्ण OR ≅ कर्ण OR …..............[`square`]
बाजू OM ≅ बाजू [`square`] ..........…[एकाच वर्तुळाच्या त्रिज्या]
∴ ΔRMO ≅ ΔRNO ….......[`square`]
∠MOR ≅ ∠NOR
तसेच, ∠MRO ≅ [`square`] ......................[`square`]
∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.
दिलेल्या आकृतीत, Q केंद्र असलेल्या वर्तुळाच्या रेख PM आणि PN स्पर्शिका आहेत. जर ∠MPN = 40°, तर ∠MQN चे माप काढा.