Advertisements
Advertisements
प्रश्न
पहिल्या 1000 धन पूर्णांकांची बेरीज करा.
कृती: समजा, 1 + 2 + 3 + .........+ 1000
अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र Sn = `square` वापरून,
S1000 = `square/2` (1 + 1000)
= 500 × 1001
= `square`
प्रथम 1000 धन पूर्णांकांची बेरीज `square` एवढी आहे.
उत्तर
समजा, 1 + 2 + 3 + .........+ 1000
अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र,
Sn = `underline("n"/2("t"_1 + "t"_"n"))` वापरून,
∴ S1000 = `underline(1000)/2` (1 + 1000)
= 500 × 1001
= 500500
∴ प्रथम 1000 धन पूर्णांकांची बेरीज 500500 एवढी आहे.
APPEARS IN
संबंधित प्रश्न
एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा.
एका अंकगणिती श्रेढीतील तीन क्रमागत पदांची बेरीज 27 व त्यांचा गुणाकार 504 आहे, तर ती पदे शोधा.
(तीन क्रमागत पदे a - d, a, a + d माना.)
एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)
एका अंकगणिती श्रेढीचे नववे पद शून्य आहे, तर 29 वे पद हे 19 व्या पदाच्या दुप्पट आहे दाखवा.
जर अंकगणिती श्रेढीतील पहिल्या p पदांची बेरीज ही पहिल्या q पदांच्या बेरजेबरोबर असेल, तर त्यांच्या पहिल्या (p + q) पदांची बेरीज शून्य असते हे दाखवा. (p ≠ q).
ज्या अंकगणिती श्रेढीचे पहिले पद a आहे. दुसरे पद b आहे आणि शेवटचे पद c आहे, तर त्या श्रेढीतील सर्व पदांची बेरीज `((a + c)(b + c - 2a))/(2(b - a))` एवढी आहे हे दाखवा.
एका क्रमिकेत tn = 2n - 5 आहे, तर तिची पहिली दोन पदे काढा.
12, 14, 16, 18, 20, ......... या अंकगणिती श्रेढीच्या पहिल्या 100 पदांची बेरीज करा.
कृती: येथे, a = 12, d = `square` n = 100, S100 = ?
Sn = `"n"/2[square + ("n" - 1)"d"]`
S100 = `square/2`[24 + (100 – 1)d]
= 50 (24 + `square`)
= `square`
= `square`
1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज करा.
कृती: 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्या 4, 8, 12, 16......... 136 या आहेत.
येथे, d = 4 आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 4, d = 4, tn = 136, Sn = ?
tn = a + (n – 1) d
`square` = 4 + (n – 1) × 4
`square` = (n –1) × 4
n = `square`
आता, Sn = `"n"/2` + [a + tn]
Sn = 17 × `square`
Sn = `square`
म्हणून, 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज `square` आहे.
1 ते 140 मधील 4 ने भाग जाणाऱ्या सर्व संख्यांची बेरीज करा.