हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा. - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा.

योग

उत्तर

या अंकगणिती श्रेढीचे, पहिले पद 'a' आणि सामान्य फरक 'd' मानू.

S55 = 3300   ....[दिलेले]

आता, `"S"_"n" = "n"/2`[2a + (n - 1)d]

∴ `"S"_55 = 55/2`[2a + (55 - 1)d]

∴ 3300 = `55/2`(2a + 54d)

∴ 3300 = `55/2 xx 2("a" + 27"d")`

∴ 3300 = 55(a + 27d)

∴ a + 27d = `3300/55`

∴ a + 27d = 60     ....(i)

∴ आता, tn = a + (n - 1)d

∴ t28 = a + (28 - 1)d 

= a + 27d

∴ t28 = 60      ...[(i) वरून]

∴ अंकगणिती श्रेढीचे 28 वे पद 60 आहे.

shaalaa.com
अंकगणिती श्रेढीतील पहिल्या n पदांची बेरीज
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: अंकगणित श्रेढी - सरावसंच 3.3 [पृष्ठ ७२]

APPEARS IN

बालभारती Algebra (Mathematics 1) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 3 अंकगणित श्रेढी
सरावसंच 3.3 | Q 6. | पृष्ठ ७२

संबंधित प्रश्न

पहिल्या 123 सम नैसर्गिक संख्यांची बेरीज काढा.


1 व 350 यांमधील सर्व सम संख्यांची बेरीज काढा.


एका अंकगणिती श्रेढीतील तीन क्रमागत पदांची बेरीज 27 व त्यांचा गुणाकार 504 आहे, तर ती पदे शोधा.
(तीन क्रमागत पदे a - d, a, a + d माना.)


एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)


पहिल्या 1000 धन पूर्णांकांची बेरीज करा.

कृती: समजा, 1 + 2 + 3 + .........+ 1000

अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र Sn = `square` वापरून,

S1000 = `square/2` (1 + 1000)

= 500 × 1001

= `square`

प्रथम 1000 धन पूर्णांकांची बेरीज `square` एवढी आहे.


12, 14, 16, 18, 20, ......... या अंकगणिती श्रेढीच्या पहिल्या 100 पदांची बेरीज करा.

कृती: येथे, a = 12, d = `square` n = 100, S100 = ?

Sn = `"n"/2[square + ("n" - 1)"d"]`

S100 = `square/2`[24 + (100 – 1)d]

= 50 (24 + `square`)

= `square`

= `square`


1 ते 50 मधील सर्व विषम संख्यांची बेरीज करा.


1 + 3 + 5 + ......... + 101 या 1 ते 101 पर्यंत विषम नैसर्गिक संख्यांची बेरीज करा.


त्रिकोणाच्या तीन कोनांची मापे अंकगणिती श्रेढरीमध्ये आहेत. सर्वांत लहान कोनाचे माप साधारण फरकाच्या पाचपट आहे, तर त्या त्रिकोणाच्या तीनही कोनांची मापे काढा. (त्रिकोणाच्या कोनांची मापे a, a + d, a + 2d घ्या.)


ज्या अंकगणिती श्रेढीत पहिले पद p आहे, दुसरे पद q आहे आणि शेवटचे पद r आहे तर त्या श्रेढीतील सर्व पदांची बेरीज `("q" + "r" - 2"p") xx (("p" + "r"))/(2("q"-"p"))` एवढी आहे हे दाखवा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×