मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा. - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा.

बेरीज

उत्तर

या अंकगणिती श्रेढीचे, पहिले पद 'a' आणि सामान्य फरक 'd' मानू.

S55 = 3300   ....[दिलेले]

आता, `"S"_"n" = "n"/2`[2a + (n - 1)d]

∴ `"S"_55 = 55/2`[2a + (55 - 1)d]

∴ 3300 = `55/2`(2a + 54d)

∴ 3300 = `55/2 xx 2("a" + 27"d")`

∴ 3300 = 55(a + 27d)

∴ a + 27d = `3300/55`

∴ a + 27d = 60     ....(i)

∴ आता, tn = a + (n - 1)d

∴ t28 = a + (28 - 1)d 

= a + 27d

∴ t28 = 60      ...[(i) वरून]

∴ अंकगणिती श्रेढीचे 28 वे पद 60 आहे.

shaalaa.com
अंकगणिती श्रेढीतील पहिल्या n पदांची बेरीज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: अंकगणित श्रेढी - सरावसंच 3.3 [पृष्ठ ७२]

APPEARS IN

बालभारती Algebra (Mathematics 1) [Marathi] 10 Standard SSC Maharashtra State Board
पाठ 3 अंकगणित श्रेढी
सरावसंच 3.3 | Q 6. | पृष्ठ ७२

संबंधित प्रश्‍न

एका अंकगणिती श्रेढीचे पहिले पद 6 व सामान्य फरक 3 आहे तर S27 काढा.

a = 6, d = 3, S27 = ?

`"S"_"n" = "n"/2 [square + ("n" - 1)"d"]`

`"S"_27 = 27/2 [12 + (27 - 1)square]`

`= 27/2 xx square`

= 27 × 45 = `square`


पहिल्या 123 सम नैसर्गिक संख्यांची बेरीज काढा.


1 व 140 यांच्या दरम्यान, 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज किती आहे, हे काढण्यासाठी खालील कृती पूर्ण करा.

1 व 140 यांच्या दरम्यान 4 ने भाग जाणाऱ्या संख्यांची बेरीज = `square`


एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)


जर अंकगणिती श्रेढीतील पहिल्या p पदांची बेरीज ही पहिल्या q पदांच्या बेरजेबरोबर असेल, तर त्यांच्या पहिल्या (p + q) पदांची बेरीज शून्य असते हे दाखवा. (p ≠ q).


पहिल्या 1000 धन पूर्णांकांची बेरीज करा.

कृती: समजा, 1 + 2 + 3 + .........+ 1000

अंकगणिती श्रेढीच्या पहिल्या n पदांच्या बेरजेचे सूत्र Sn = `square` वापरून,

S1000 = `square/2` (1 + 1000)

= 500 × 1001

= `square`

प्रथम 1000 धन पूर्णांकांची बेरीज `square` एवढी आहे.


12, 14, 16, 18, 20, ......... या अंकगणिती श्रेढीच्या पहिल्या 100 पदांची बेरीज करा.

कृती: येथे, a = 12, d = `square` n = 100, S100 = ?

Sn = `"n"/2[square + ("n" - 1)"d"]`

S100 = `square/2`[24 + (100 – 1)d]

= 50 (24 + `square`)

= `square`

= `square`


1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज करा.

कृती: 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्या 4, 8, 12, 16......... 136 या आहेत.

येथे, d = 4 आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.

a = 4, d = 4, tn = 136, Sn = ? 

tn = a + (n – 1) d

`square` = 4 + (n – 1) × 4

`square` = (n –1) × 4

n = `square`

आता, Sn = `"n"/2` + [a + tn]

Sn = 17 × `square`

Sn = `square`

म्हणून, 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज `square` आहे.


1 + 3 + 5 + ......... + 101 या 1 ते 101 पर्यंत विषम नैसर्गिक संख्यांची बेरीज करा.


त्रिकोणाच्या तीन कोनांची मापे अंकगणिती श्रेढरीमध्ये आहेत. सर्वांत लहान कोनाचे माप साधारण फरकाच्या पाचपट आहे, तर त्या त्रिकोणाच्या तीनही कोनांची मापे काढा. (त्रिकोणाच्या कोनांची मापे a, a + d, a + 2d घ्या.)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×