मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

त्रिकोणाच्या तीन कोनांची मापे अंकगणिती श्रेढरीमध्ये आहेत. सर्वांत लहान कोनाचे माप साधारण फरकाच्या पाचपट आहे, तर त्या त्रिकोणाच्या तीनही कोनांची मापे काढा. (त्रिकोणाच्या कोनांची मापे a, a + d, - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

त्रिकोणाच्या तीन कोनांची मापे अंकगणिती श्रेढरीमध्ये आहेत. सर्वांत लहान कोनाचे माप साधारण फरकाच्या पाचपट आहे, तर त्या त्रिकोणाच्या तीनही कोनांची मापे काढा. (त्रिकोणाच्या कोनांची मापे a, a + d, a + 2d घ्या.)

बेरीज

उत्तर

समजा, त्रिकोणाच्या तीन कोनांची मापे अंकगणिती श्रेढीत अनुक्रमे a, a + d, a + 2d, आहेत.

येथे a = पहिले पद, d = साधारण फरक

त्रिकोणाच्या कोनांच्या मापांची बेरीज 180° असते.

∴ a + a + d + a + 2d = 180°

∴ 3a + 3d = 180°

∴ a + d = `180^circ/3`

∴ a + d = 60°  ...(i)

दिलेल्या अटीनुसार, सर्वांत लहान कोनाचे माप साधारण फरकाच्या पाचपट आहे.

∴ a = 5d

a = 5d समीकरण (i) मध्ये ठेवून,

5d + d = 60°

∴ 6d = 60°

∴ d = `60^circ/6` = 10°

∴ a = 5d = 5(10°) = 50°

a + d = 50° + 10° = 60°

a + 2d = 50° + 2(10°)

= 50° + 20°

= 70°

∴ त्रिकोणाच्या तीनही कोनांची मापे 50°, 60° व 70° आहेत.

shaalaa.com
अंकगणिती श्रेढीतील पहिल्या n पदांची बेरीज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

संबंधित प्रश्‍न

1 व 140 यांच्या दरम्यान, 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज किती आहे, हे काढण्यासाठी खालील कृती पूर्ण करा.

1 व 140 यांच्या दरम्यान 4 ने भाग जाणाऱ्या संख्यांची बेरीज = `square`


एका अंकगणिती श्रेढीच्या पहिल्या 55 पदांची बेरीज 3300 आहे, तर तिचे 28 वे पद काढा.


एका अंकगणिती श्रेढीतील तीन क्रमागत पदांची बेरीज 27 व त्यांचा गुणाकार 504 आहे, तर ती पदे शोधा.
(तीन क्रमागत पदे a - d, a, a + d माना.)


एका अंकगणिती श्रेढीतील चार क्रमागत पदांची बेरीज 12 आहे. तसेच, त्या चार क्रमागत पदांपैकी तिसऱ्या व चौथ्या पदांची बेरीज 14 आहे, तर ती चार पदे काढा.
(चार क्रमागत पदे a - d, a, a + d, a + 2d माना.)


12, 14, 16, 18, 20, ......... या अंकगणिती श्रेढीच्या पहिल्या 100 पदांची बेरीज करा.

कृती: येथे, a = 12, d = `square` n = 100, S100 = ?

Sn = `"n"/2[square + ("n" - 1)"d"]`

S100 = `square/2`[24 + (100 – 1)d]

= 50 (24 + `square`)

= `square`

= `square`


1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज करा.

कृती: 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्या 4, 8, 12, 16......... 136 या आहेत.

येथे, d = 4 आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.

a = 4, d = 4, tn = 136, Sn = ? 

tn = a + (n – 1) d

`square` = 4 + (n – 1) × 4

`square` = (n –1) × 4

n = `square`

आता, Sn = `"n"/2` + [a + tn]

Sn = 17 × `square`

Sn = `square`

म्हणून, 1 ते 140 यांदरम्यानच्या 4 ने भाग जाणाऱ्या नैसर्गिक संख्यांची बेरीज `square` आहे.


4 ने भाग जाणाऱ्या तीन अंकी नैसर्गिक संख्यांची बेरीज काढा.


1 ते 50 मधील सर्व विषम संख्यांची बेरीज करा.


1 + 3 + 5 + ......... + 101 या 1 ते 101 पर्यंत विषम नैसर्गिक संख्यांची बेरीज करा.


पहिल्या 'n' सम नैसर्गिक संख्यांची बेरीज करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×