Advertisements
Advertisements
प्रश्न
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
उत्तर
P(n) is the statement
1! + (2 × 2!) + (3 × 3!) + ….. + (n × n!) = (n + 1)! – 1
To prove for n = 1
L.H.S = 1! = 1
R.H.S = (1 + 1)! – 1 = 2! – 1 = 2 – 1 = 1
L.H.S = R.H.S
⇒ P(1) is true
Assume that the given statement is true for n = k
(i.e.) 1! + (2 × 2!) + (3 × 3!) + … + (k × k!) = (k + 1)! – 1 is true
To prove P(k + 1) is true
P(k + 1) = `"P"("k") + "t"_(("k" + 1))`
P(k + 1) = (k + 1)! – 1 + (k + 1) × (k + 1)!
= (k + 1)! + (k + 1)(k + 1)! – 1
= (k + 1)! [1 + k + 1] – 1
= (k + 1)! (k + 2) – 1
= (k + 2)! – 1
= (k + 1 + 1)! – 1
∴ P(k + 1) is true
⇒ P(k) is true,
So by the principle of mathematical induction
P(n) is true.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2` for all n ∈ N.
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of mathematical induction, prove the following:
52n – 1 is divisible by 24, for all n ∈ N.
By the principle of mathematical induction, prove the following:
2n > n, for all n ∈ N.
By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`
Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n
Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n
Prove that using the Mathematical induction
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6) = (sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`
Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______
Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to