हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

By the principle of mathematical induction, prove the following: 52n – 1 is divisible by 24, for all n ∈ N. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

By the principle of mathematical induction, prove the following:

52n – 1 is divisible by 24, for all n ∈ N.

योग

उत्तर

Let P(n) be the proposition that 52n – 1 is divisible by 24.

For n = 1, P(1) is: 52 – 1 = 25 – 1 = 24, 24 is divisible by 24.

Assume that P(k) is true.

i.e., 52k – 1 is divisible by 24

Let 52k – 1 = 24m

To prove P(k + 1) is true.

i.e., to prove `5^(2(k+1)) - 1` is divisible by 24.

P(k): 52k – 1 is divisible by 24.

P(k + 1) = `5^(2(k+1)) - 1`

= 52k . 52 – 1

= 52k (25) – 1

= 52k (24 + 1) – 1

= 24 . 52k + 52k – 1

= 24 . 52k + 24m

= 24 [52k + 24]

which is divisible by 24 ⇒ P(k + 1) is also true.

Hence by mathematical induction, P(n) is true for all values n ∈ N.

shaalaa.com
Mathematical Induction
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Algebra - Exercise 2.5 [पृष्ठ ४१]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 2 Algebra
Exercise 2.5 | Q 7 | पृष्ठ ४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×