Advertisements
Advertisements
प्रश्न
Prove that the sum of the first n non-zero even numbers is n2 + n
उत्तर
Let P(n): 2 + 4 + 6 + … + 2n = n2 + n, ∀ n ∈ N
Step 1:
P(1): 2 = 12 + 1 = 2
Which is true for P(1)
Step 2:
P(k): 2 + 4 + 6 + … + 2k
= k2 + k.
Let it be true.
Step 3:
P(k + 1): 2 + 4 + 6 + … + 2k + (2k + 2)
= k2+ k + (2k + 2)
= k2 + 3k + 2
= k2 + 2k + k + 1 + 1
= (k+ 1)2 + (k + 1)
Which is true for P(k + 1)
So, P(k + 1) is true whenever P(k) is true.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.
By the principle of mathematical induction, prove the following:
1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2` for all n ∈ N.
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
By the principle of mathematical induction, prove the following:
52n – 1 is divisible by 24, for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
By the principle of mathematical induction, prove the following:
2n > n, for all n ∈ N.
By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`
By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
Prove that using the Mathematical induction
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6) = (sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______
Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to