हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Using the Mathematical induction, show that for any natural number n,nnnnnnn11⋅2⋅3+12⋅3⋅4+13⋅4⋅5+...+1n(n+1)⋅(n+2)=n(n+3)4(n+1)(n+2) - Mathematics

Advertisements
Advertisements

प्रश्न

Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`

योग

उत्तर

Let P(n) = `1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`

For n = 1

P(1) = `1/(1(1 + 1)(1 + 2))`

= `(1(1 + 3))/(4(1 + 1)(1 + 2))`

⇒ `1/(1 xx 2 xx 3) = 4/(4 xx 2 xx 3)`

⇒ `1/6 = 1/6`

∴ P(1) is true

Let P(n) be true for n = k

∴ P(k) = `1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("k"("k" + 1)("k" + 2)) + ("k"("k" + 3))/(4("k" + 1)("k" + 2))` .....(1)

For n = k + 1

R.H.S = `(("k" + 1)("k" + 4))/(4("k" + 2)("k" + 3))`

L.H.S = `("k"("k" + 3))/(4("k" + 1)("k" + 3)) + 1/(("k" + 1)("k" + 2)("k" + 3))`    .....[Using (i)]

= `1/(("k" + 1)("k" + 2)) [("k"^3 + 3"k")/4 + 1/("k" + 3)]`

= `1/(("k" + 1)("k" + 2))[("k"^2 + 6"k"^2 + 9"k" + 4)/(4("k" + 3))]`

= `1/(("k" + 1)("k" + 2)) [(("k" + 1)^2 ("k" + 4))/(4("k" + 3))]`

= `[(("k" + 1)("k" + 4))/(4("k" + 2)("k" + 3))]`

∴ P(k + 1) is true

Thus P(k) is true

⇒ P(k + 1) is true

Hence by principle of mathematical induction,

P(n) is true for all n ∈ z

shaalaa.com
Mathematical Induction
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Combinatorics and Mathematical Induction - Exercise 4.4 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 4 Combinatorics and Mathematical Induction
Exercise 4.4 | Q 7 | पृष्ठ १९६

संबंधित प्रश्न

By the principle of mathematical induction, prove the following:

1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.


By the principle of mathematical induction, prove the following:

1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2`  for all n ∈ N.


By the principle of mathematical induction, prove the following:

32n – 1 is divisible by 8, for all n ∈ N.


By the principle of mathematical induction, prove the following:

an – bn is divisible by a – b, for all n ∈ N.


By the principle of mathematical induction, prove the following:

52n – 1 is divisible by 24, for all n ∈ N.


By the principle of mathematical induction, prove the following:

n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.


By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.


By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`


By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`


Prove that the sum of the first n non-zero even numbers is n2 + n


Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 +  3 + ... + "n") = ("n" - 1)/("n" + 1)`


Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`


Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y


Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n


Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×