हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

By the principle of mathematical induction, prove that, for n ≥ 112 + 32 + 52 + ... + (2n − 1)2 = nnnn(2n-1)(2n+1)3 - Mathematics

Advertisements
Advertisements

प्रश्न

By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`

योग

उत्तर

Let P(n) = 12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`

For n = 1

P(1) = (2 × 1 − 1)2

= `(1(2 xx 1 - 1)(2 xx 1 + 1))/3`

⇒ 1 = `(1 xx 1 xx 3)/3`

∴ P(1) is true

Let P(n) be true for n = k

∴ P(k) = 12 + 32 + 52 + ... + (2k − 1)2 = `("n"(2"k" - 1)(2"k" + 1))/3`  ......(i)

For n = k + 1

R.H.S = `(("k" + 1)(2"k" + 1)(2"k" + 3))/3`

L.H.S = `("k"(2"k" - 1)(2"k" + 1))/3  ("k" + 1)^2` .....(Using (i)]

= `(2"k" + 1) [("k"(2"k" - 1))/3 + (2"k" + 1)]`

= `(2"k" + 1) [(2"k"^2- "k" + 6"k" + 3)/3]`

=`((2"k" - 1)(2"k"^2 + 5"k" + 3))/3`

= `(("k" + 1)("k" + 1)(2"k" + 3))/3`

= `(("k" + 1)(2"k" + 1)(2"k" + 3))/3`

∴ P(k + 1) is true

Thus P(k) is true

⇒ P(k + 1) is true.

Hence by principle of mathematical induction,

P(k) is true for all n ∈ N.

shaalaa.com
Mathematical Induction
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Combinatorics and Mathematical Induction - Exercise 4.4 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 4 Combinatorics and Mathematical Induction
Exercise 4.4 | Q 2 | पृष्ठ १९६

संबंधित प्रश्न

By the principle of mathematical induction, prove the following:

13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.


By the principle of mathematical induction, prove the following:

1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.


By the principle of mathematical induction, prove the following:

4 + 8 + 12 + ……. + 4n = 2n(n + 1), for all n ∈ N.


By the principle of mathematical induction, prove the following:

32n – 1 is divisible by 8, for all n ∈ N.


By the principle of mathematical induction, prove the following:

52n – 1 is divisible by 24, for all n ∈ N.


By the principle of mathematical induction, prove the following:

n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.


By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.


The term containing x3 in the expansion of (x – 2y)7 is:


By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`


By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`


Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`


Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`


Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`


Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y


By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`


Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n


Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×