Advertisements
Advertisements
प्रश्न
The term containing x3 in the expansion of (x – 2y)7 is:
विकल्प
3rd
4th
5th
6th
उत्तर
5th
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`
By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`
Prove that the sum of the first n non-zero even numbers is n2 + n
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n
Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways