हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

By the principle of mathematical induction, prove that, for n ≥ 1 13 + 23 + 33 + ... + n3 = nn(n(n+1)2)2 - Mathematics

Advertisements
Advertisements

प्रश्न

By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`

योग

उत्तर

P(n) = 13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`

For n = 1

P(1) = 1

= `[(1(1 + 1))/2]^2`

⇒ 1 = 1

∴ P(1) is true

Let P(n) be true for n = k

∴ P(k) = 13 + 23 + 33 + ... + k3 

= `[("k"("k" + 1))/2]^2`    ......(i)

From n = k + 1

P(k + 1) = 13 + 23 + 33 + ... + k+ (k + 1)

= `[("k"("k" + 1))/2]^2 + ("k" + 1)^3`   ......[Using (i)]

= `("k" + 1)^2 ["k"^2/4 + "k" + 1]` 

= `("k" + 1)^2 [("k"^2 + 4"k" + 4)/4]`

=`(("k" + 1)^2("k" + 2)^2)/4`

= `[(("k" + 1)("k" +2))/2]^2`

∴ P(k+ 1) is true.

Thus P(k) is true

⇒ (k + 1) is true.

Hence by principle of mathematical induction

P(n) is true for all n ∈ N.

shaalaa.com
Mathematical Induction
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Combinatorics and Mathematical Induction - Exercise 4.4 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 4 Combinatorics and Mathematical Induction
Exercise 4.4 | Q 1 | पृष्ठ १९६

संबंधित प्रश्न

By the principle of mathematical induction, prove the following:

13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.


By the principle of mathematical induction, prove the following:

1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.


By the principle of mathematical induction, prove the following:

1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2`  for all n ∈ N.


By the principle of mathematical induction, prove the following:

32n – 1 is divisible by 8, for all n ∈ N.


By the principle of mathematical induction, prove the following:

52n – 1 is divisible by 24, for all n ∈ N.


By the principle of mathematical induction, prove the following:

n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.


By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.


By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`


Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 +  3 + ... + "n") = ("n" - 1)/("n" + 1)`


Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`


Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`


Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1


By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`


Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n


Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n


Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n


Prove that using the Mathematical induction
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6) = (sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×