हिंदी

Prove by method of induction, for all n ∈ N: 3 + 7 + 11 + ..... + to n terms = n(2n+1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)

योग

उत्तर

Let P(n) ≡ 3 + 7 + 11 + ... to n terms = n(2n + 1), for all n ∈ N.

3, 7, 11, ... are in A.P. with a = 3, d = 4

∴ nth term = a+ (n – 1)d = 3 + (n – 1)4 = 4n – 1

∴ P(n) ≡ 3 + 7 + 11 + ... + (4n – 1) = n (2n + 1)

Step 1: For n = 1, L.H.S. = 3

R.H.S. = 1(2 × 1 + 1) = 3

∴ L.H.S. = R.H.S. for n = 1

∴ P(1) is true.

Step 2: Let us assume that for some k ∈ N, P(k) is true, i.e., 3 + 7 + 11 + ... + (4k – 1) = k(2k + 1)  ...(1)

Step 3: To prove that P(k + 1) is true, i.e., to prove that 3 + 7 + 11 + ... + (4k – 1) + (4k + 3) = (k + 1)(2k + 3)

Now, L.H.S. = 3 + 7 + 11 + ... + (4k – 1) + (4k + 3)

= k(2k + 1) + (4k + 3) ... [By (1)]

= 2k2 + k + 4k + 3

= 2k2 + 3k + 2k + 3

= k(2k + 3) + 1(2k + 3)

= (k + 1)(2k + 3)

= R.H.S

∴ P(k + 1) is true.

Step 4: From all the above steps and by the principle of mathematical induction, the result P(n) is true for all n ∈ N, i.e., 3 + 7 + 11 + ... to n terms = n(2n + 1), for all n ∈ N.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [पृष्ठ ७३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 2 | पृष्ठ ७३

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

Given an example of a statement P (n) such that it is true for all n ∈ N.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+7 is divisible by 8 for all n ∈ N.

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×