Advertisements
Advertisements
प्रश्न
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
उत्तर
Let P(n) be the given statement.
Now,
\[P(n) = \frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
\[\text{ Step 1} : \]
\[P(1) = \frac{1}{3 . 5} = \frac{1}{15} = \frac{1}{3(2 + 3)}\]
\[\text{ Hence, P(1) is true } . \]
\[\text{ Step 2 } : \]
\[\text{ Let P(m) be true . } \]
\[\text{ Then, } \]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2m + 1)(2m + 3)} = \frac{m}{3(2m + 3)}\]
\[\text{ To prove: P(m + 1) is true } . \]
\[\text{ That is } , \]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2m + 3)(2m + 5)} = \frac{m + 1}{3(2m + 5)}\]
\[Now, \]
\[P(m) = \frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2m + 1)(2m + 3)} = \frac{m}{3(2m + 3)}\]
\[ \Rightarrow \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{(2m + 1)(2m + 3)} + \frac{1}{(2m + 3)(2m + 5)} = \frac{m}{3(2m + 3)} + \frac{1}{(2m + 3)(2m + 5)} \left[ \text{ Adding } \frac{1}{(2m + 3)(2m + 5)} \text{ to both sides } \right]\]
\[ \Rightarrow \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{(2m + 3)(2m + 5)} = \frac{2 m^2 + 5m + 3}{3(2m + 3)(2m + 5)} = \frac{(2m + 3)(m + 1)}{3(2m + 3)(2m + 5)} = \frac{m + 1}{3\left( 2m + 5 \right)}\]
\[\text{ Thus, P(m + 1) is true . } \]
\[\text{By the principle of mathematical induction, P(n) is true for all n} \in N .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
Prove by method of induction, for all n ∈ N:
3 + 7 + 11 + ..... + to n terms = n(2n+1)
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Answer the following:
Prove by method of induction
`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀ "n" ∈ "N"`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.