हिंदी

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = sinnθ2sin (n+1)2θsin θ2, for all n ∈ N. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.

योग

उत्तर

Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ

= `(sin  (ntheta)/2 . sin  ((n + 1))/2 theta)/(sin  theta/2)`, n ∈ N.

Step 1: P(1) : sinθ = `(sin  theta/2 . sin ((1 + 1)/2)theta)/(sin  theta/2)`

= `(sin  theta/2 . sin theta)/(sin  theta/2)`

= sinθ 

∴ sinθ = sinθ which is true for P(1).

Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2)`

Let it be true for P(k).

Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2) + sin(k + 1)theta`

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin  theta/2)/(sin  theta/2)`

= `(2sin  (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin  theta/2)/(2 sin  theta/2)`

= `(cos((ktheta)/2 - (k + 1)/2  theta) - cos((ktheta)/2 + (k + 1)/2  theta) + cos[(k + 1)theta -  theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin  theta/2)`

= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin  ((theta/2 - ktheta - (3theta)/2)/2))/(2sin  theta/2)`   ......`[because cos"A" - cos"B" = - 2sin  (("A" + "B"))/2 sin  (("A" - "B"))/2]`

= `(-2sin((ktheta + 2theta)/2) . sin  ((-ktheta - theta)/2))/(2sin  theta/2)`

= `(sin((ktheta + 2theta)/2).sin  ((ktheta + theta)/2))/(sin  theta/2)`

= `(sin[((k + 1) - 1)/2]theta.sin  [(k + 1)/2]theta)/(sin  theta/2)` which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Principle of Mathematical Induction - Exercise [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 4 Principle of Mathematical Induction
Exercise | Q 22 | पृष्ठ ७१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

52n −1 is divisible by 24 for all n ∈ N.


(ab)n = anbn for all n ∈ N. 

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×