Advertisements
Advertisements
प्रश्न
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
उत्तर
Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ
= `(sin (ntheta)/2 . sin ((n + 1))/2 theta)/(sin theta/2)`, n ∈ N.
Step 1: P(1) : sinθ = `(sin theta/2 . sin ((1 + 1)/2)theta)/(sin theta/2)`
= `(sin theta/2 . sin theta)/(sin theta/2)`
= sinθ
∴ sinθ = sinθ which is true for P(1).
Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2)`
Let it be true for P(k).
Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2) + sin(k + 1)theta`
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin theta/2)/(sin theta/2)`
= `(2sin (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin theta/2)/(2 sin theta/2)`
= `(cos((ktheta)/2 - (k + 1)/2 theta) - cos((ktheta)/2 + (k + 1)/2 theta) + cos[(k + 1)theta - theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin theta/2)`
= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin ((theta/2 - ktheta - (3theta)/2)/2))/(2sin theta/2)` ......`[because cos"A" - cos"B" = - 2sin (("A" + "B"))/2 sin (("A" - "B"))/2]`
= `(-2sin((ktheta + 2theta)/2) . sin ((-ktheta - theta)/2))/(2sin theta/2)`
= `(sin((ktheta + 2theta)/2).sin ((ktheta + theta)/2))/(sin theta/2)`
= `(sin[((k + 1) - 1)/2]theta.sin [(k + 1)/2]theta)/(sin theta/2)` which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?