मराठी

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = sinnθ2sin (n+1)2θsin θ2, for all n ∈ N. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.

बेरीज

उत्तर

Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ

= `(sin  (ntheta)/2 . sin  ((n + 1))/2 theta)/(sin  theta/2)`, n ∈ N.

Step 1: P(1) : sinθ = `(sin  theta/2 . sin ((1 + 1)/2)theta)/(sin  theta/2)`

= `(sin  theta/2 . sin theta)/(sin  theta/2)`

= sinθ 

∴ sinθ = sinθ which is true for P(1).

Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2)`

Let it be true for P(k).

Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2) + sin(k + 1)theta`

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin  theta/2)/(sin  theta/2)`

= `(2sin  (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin  theta/2)/(2 sin  theta/2)`

= `(cos((ktheta)/2 - (k + 1)/2  theta) - cos((ktheta)/2 + (k + 1)/2  theta) + cos[(k + 1)theta -  theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin  theta/2)`

= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin  ((theta/2 - ktheta - (3theta)/2)/2))/(2sin  theta/2)`   ......`[because cos"A" - cos"B" = - 2sin  (("A" + "B"))/2 sin  (("A" - "B"))/2]`

= `(-2sin((ktheta + 2theta)/2) . sin  ((-ktheta - theta)/2))/(2sin  theta/2)`

= `(sin((ktheta + 2theta)/2).sin  ((ktheta + theta)/2))/(sin  theta/2)`

= `(sin[((k + 1) - 1)/2]theta.sin  [(k + 1)/2]theta)/(sin  theta/2)` which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Principle of Mathematical Induction - Exercise [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 4 Principle of Mathematical Induction
Exercise | Q 22 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

52n −1 is divisible by 24 for all n ∈ N.


Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×