Advertisements
Advertisements
प्रश्न
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
उत्तर
Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ
= `(sin (ntheta)/2 . sin ((n + 1))/2 theta)/(sin theta/2)`, n ∈ N.
Step 1: P(1) : sinθ = `(sin theta/2 . sin ((1 + 1)/2)theta)/(sin theta/2)`
= `(sin theta/2 . sin theta)/(sin theta/2)`
= sinθ
∴ sinθ = sinθ which is true for P(1).
Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2)`
Let it be true for P(k).
Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2) + sin(k + 1)theta`
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin theta/2)/(sin theta/2)`
= `(2sin (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin theta/2)/(2 sin theta/2)`
= `(cos((ktheta)/2 - (k + 1)/2 theta) - cos((ktheta)/2 + (k + 1)/2 theta) + cos[(k + 1)theta - theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin theta/2)`
= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin ((theta/2 - ktheta - (3theta)/2)/2))/(2sin theta/2)` ......`[because cos"A" - cos"B" = - 2sin (("A" + "B"))/2 sin (("A" - "B"))/2]`
= `(-2sin((ktheta + 2theta)/2) . sin ((-ktheta - theta)/2))/(2sin theta/2)`
= `(sin((ktheta + 2theta)/2).sin ((ktheta + theta)/2))/(sin theta/2)`
= `(sin[((k + 1) - 1)/2]theta.sin [(k + 1)/2]theta)/(sin theta/2)` which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.