Advertisements
Advertisements
प्रश्न
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
उत्तर
Let P(n) ≡ 8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`, for all n ∈ N
Step I:
Put n = 1
L.H.S. = 8
R.H.S. = `1/2[9(1)+ 7]` = 8 = L.H.S.
∴ P(n) is true for n = 1
Step II:
Let us consider that P(n) is true for n = k
∴ 8 + 17 + 26 + … + (9k – 1) = `"k"/2(9"k" + 7)` ...(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., 8 + 17 + 26 + … + [9(k + 1) – 1]
= `(("k" + 1))/2 [9("k" + 1) + 7]`
= `(("k" + 1))/2 (9"k" + 16)`
L.H.S. = 8 + 17 + 26 + … + [9(k + 1) – 1]
= 8 + 17 + 26 + … + (9k – 1) + [9(k + 1) – 1]
= `"k"/2 (9"k" + 7) + (9"k" + 8)` ...[From (i)]
= `(9"k"^2 + 7"k" + 18"k" + 16)/2`
= `(9"k"^2 + 25"k" + 16)/2`
= `(9"k"^2 + 9"k" + 16"k" + 16)/2`
= `(9"k"("k" + 1) + 16("k" + 1))/2`
= `(("k" + 1))/2(9"k" + 16)`
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)` for all n ∈ N
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.