मराठी

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by Sn = ,if n is even,if n is odd{n(n+1)22, if n - Mathematics

Advertisements
Advertisements

प्रश्न

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`

बेरीज

उत्तर

Here P(n): Sn = `{{:((n(n + 1)^2)/2",",  "when n is even"),((n^2(n + 1))/2",",  "when n is odd"):}`

Also, note that any term Tn of the series is given by

Tn = `{{:(n^2, "if n is odd"),(2n^2, "if n is even"):}`

We observe that P(1) is true.

Since P(1): S1 = 12

= 1

= `(1.2)/2`

= `(1^2.(1 + 1))/2`

Assume that P(k) is true for some natural number k, i.e.

Case 1: When k is odd, then k + 1 is even.

We have P(k + 1) : Sk + 1 = 12 + 2 × 22 + ... + k2 + 2 × (k + 1)2

= `(k^2(k + 1))/2 + 2 xx (k + 1)^2`

= `((k + 1))/2 [k^2 + 4(k + 1)]`  .....(As k is odd, 12 + 2 × 22 + ... + k2 = `k^2 ((k + 1))/2`)

= `(k + 1)/2 [k^2 + 4k + 4]`

= `(k + 1)/2 (k + 2)^2`

= `(k + 1) ([(k + 1) + 1]^2)/2`

So P(k + 1) is true.

Whenever P(k) is true in the case when k is odd.

Case 2: When k is even, then k + 1 is odd.

Now, P(k + 1): 12 + 2 × 22 + ... + 2.k2 + (k + 1)2

= `(k(k + 1)^2)/2 + (k + 1)^2`  ......(As k is even, 12 + 2 × 22 + ... + 2k2 = `k(k + 1)^2/2`)

= `((k + 1)^2 (k + 2))/2`

= `((k + 1)^2 ((k + 1) + 1))/2`

Therefore, P(k + 1) is true.

Whenever P(k) is true for the case when k is even.

Thus, P(k + 1) is true.

Whenever, P(k) is true for any natural numbers k.

Hence, P(n) true for all natural numbers.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Principle of Mathematical Induction - Solved Examples [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 4 Principle of Mathematical Induction
Solved Examples | Q 10 | पृष्ठ ६७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×