Advertisements
Advertisements
प्रश्न
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
उत्तर
Here P(n): Sn = `{{:((n(n + 1)^2)/2",", "when n is even"),((n^2(n + 1))/2",", "when n is odd"):}`
Also, note that any term Tn of the series is given by
Tn = `{{:(n^2, "if n is odd"),(2n^2, "if n is even"):}`
We observe that P(1) is true.
Since P(1): S1 = 12
= 1
= `(1.2)/2`
= `(1^2.(1 + 1))/2`
Assume that P(k) is true for some natural number k, i.e.
Case 1: When k is odd, then k + 1 is even.
We have P(k + 1) : Sk + 1 = 12 + 2 × 22 + ... + k2 + 2 × (k + 1)2
= `(k^2(k + 1))/2 + 2 xx (k + 1)^2`
= `((k + 1))/2 [k^2 + 4(k + 1)]` .....(As k is odd, 12 + 2 × 22 + ... + k2 = `k^2 ((k + 1))/2`)
= `(k + 1)/2 [k^2 + 4k + 4]`
= `(k + 1)/2 (k + 2)^2`
= `(k + 1) ([(k + 1) + 1]^2)/2`
So P(k + 1) is true.
Whenever P(k) is true in the case when k is odd.
Case 2: When k is even, then k + 1 is odd.
Now, P(k + 1): 12 + 2 × 22 + ... + 2.k2 + (k + 1)2
= `(k(k + 1)^2)/2 + (k + 1)^2` ......(As k is even, 12 + 2 × 22 + ... + 2k2 = `k(k + 1)^2/2`)
= `((k + 1)^2 (k + 2))/2`
= `((k + 1)^2 ((k + 1) + 1))/2`
Therefore, P(k + 1) is true.
Whenever P(k) is true for the case when k is even.
Thus, P(k + 1) is true.
Whenever, P(k) is true for any natural numbers k.
Hence, P(n) true for all natural numbers.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
Given an example of a statement P (n) such that it is true for all n ∈ N.
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
3 + 7 + 11 + ..... + to n terms = n(2n+1)
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.