English

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by Sn = ,if n is even,if n is odd{n(n+1)22, if n - Mathematics

Advertisements
Advertisements

Question

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`

Sum

Solution

Here P(n): Sn = `{{:((n(n + 1)^2)/2",",  "when n is even"),((n^2(n + 1))/2",",  "when n is odd"):}`

Also, note that any term Tn of the series is given by

Tn = `{{:(n^2, "if n is odd"),(2n^2, "if n is even"):}`

We observe that P(1) is true.

Since P(1): S1 = 12

= 1

= `(1.2)/2`

= `(1^2.(1 + 1))/2`

Assume that P(k) is true for some natural number k, i.e.

Case 1: When k is odd, then k + 1 is even.

We have P(k + 1) : Sk + 1 = 12 + 2 × 22 + ... + k2 + 2 × (k + 1)2

= `(k^2(k + 1))/2 + 2 xx (k + 1)^2`

= `((k + 1))/2 [k^2 + 4(k + 1)]`  .....(As k is odd, 12 + 2 × 22 + ... + k2 = `k^2 ((k + 1))/2`)

= `(k + 1)/2 [k^2 + 4k + 4]`

= `(k + 1)/2 (k + 2)^2`

= `(k + 1) ([(k + 1) + 1]^2)/2`

So P(k + 1) is true.

Whenever P(k) is true in the case when k is odd.

Case 2: When k is even, then k + 1 is odd.

Now, P(k + 1): 12 + 2 × 22 + ... + 2.k2 + (k + 1)2

= `(k(k + 1)^2)/2 + (k + 1)^2`  ......(As k is even, 12 + 2 × 22 + ... + 2k2 = `k(k + 1)^2/2`)

= `((k + 1)^2 (k + 2))/2`

= `((k + 1)^2 ((k + 1) + 1))/2`

Therefore, P(k + 1) is true.

Whenever P(k) is true for the case when k is even.

Thus, P(k + 1) is true.

Whenever, P(k) is true for any natural numbers k.

Hence, P(n) true for all natural numbers.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Solved Examples [Page 67]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Solved Examples | Q 10 | Page 67

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×