Advertisements
Advertisements
Question
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Solution
Here P(n): Sn = `{{:((n(n + 1)^2)/2",", "when n is even"),((n^2(n + 1))/2",", "when n is odd"):}`
Also, note that any term Tn of the series is given by
Tn = `{{:(n^2, "if n is odd"),(2n^2, "if n is even"):}`
We observe that P(1) is true.
Since P(1): S1 = 12
= 1
= `(1.2)/2`
= `(1^2.(1 + 1))/2`
Assume that P(k) is true for some natural number k, i.e.
Case 1: When k is odd, then k + 1 is even.
We have P(k + 1) : Sk + 1 = 12 + 2 × 22 + ... + k2 + 2 × (k + 1)2
= `(k^2(k + 1))/2 + 2 xx (k + 1)^2`
= `((k + 1))/2 [k^2 + 4(k + 1)]` .....(As k is odd, 12 + 2 × 22 + ... + k2 = `k^2 ((k + 1))/2`)
= `(k + 1)/2 [k^2 + 4k + 4]`
= `(k + 1)/2 (k + 2)^2`
= `(k + 1) ([(k + 1) + 1]^2)/2`
So P(k + 1) is true.
Whenever P(k) is true in the case when k is odd.
Case 2: When k is even, then k + 1 is odd.
Now, P(k + 1): 12 + 2 × 22 + ... + 2.k2 + (k + 1)2
= `(k(k + 1)^2)/2 + (k + 1)^2` ......(As k is even, 12 + 2 × 22 + ... + 2k2 = `k(k + 1)^2/2`)
= `((k + 1)^2 (k + 2))/2`
= `((k + 1)^2 ((k + 1) + 1))/2`
Therefore, P(k + 1) is true.
Whenever P(k) is true for the case when k is even.
Thus, P(k + 1) is true.
Whenever, P(k) is true for any natural numbers k.
Hence, P(n) true for all natural numbers.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.