Advertisements
Advertisements
Question
Solution
Let P(n) be the given statement.
Thus, we have:
\[P\left( n \right): 1 + \frac{1}{4} + \frac{1}{9} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\]
\[\text{ Step} 1: P(2): \frac{1}{2^2} = \frac{1}{4} < 2 - \frac{1}{2}\]
\[\text{ Thus, } P\left( 2 \right) \text{ is true } . \left[ \text{ We have not taken n = 1 because it is not possible . We will start this function from n = 2 onwards . } \right]\]
\[\text{ Step} 2: \]
\[\text{ Let P } \left( m \right) \text{ be true .} \]
\[\text{ Now } , \]
\[1 + \frac{1}{4} + \frac{1}{9} + . . . + \frac{1}{m^2} < 2 - \frac{1}{m}\]
\[\text{ We need to prove that P(m + 1) is true } . \]
\[\text{ We know that P(m) is true } . \]
\[\text{ Thus, we have: } \]
\[1 + \frac{1}{4} + \frac{1}{9} + . . . + \frac{1}{m^2} < 2 - \frac{1}{m}\]
\[ \Rightarrow 1 + \frac{1}{4} + \frac{1}{9} + . . . + \frac{1}{m^2} + \frac{1}{\left( m + 1 \right)^2} < 2 - \frac{1}{m} + \frac{1}{\left( m + 1 \right)^2} \left[ \text{ Adding } \frac{1}{(m + 1 )^2} to \text{ both sides } \right]\]
\[ \Rightarrow P\left( m + 1 \right) < 2 - \frac{1}{m + 1} \left[ \because \left( m + 1 \right)^2 > m + 1, \frac{1}{\left( m + 1 \right)^2} < \frac{1}{m + 1} \Rightarrow \frac{1}{m} - \frac{1}{\left( m + 1 \right)^2} < \frac{1}{m + 1} as m < m + 1 \right] \]
\[\text{ Thus, } P\left( m + 1 \right) \text{ is true } . \]
\[\text{ By principle of mathematical induction, P(n) is true for all n } \in N, n \geq 2 .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
32n+7 is divisible by 8 for all n ∈ N.
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.