English

Prove by method of induction, for all n ∈ N: 1.2 + 2.3 + 3.4 + ..... + n(n + 1) = n3(n+1)(n+2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`

Sum

Solution

Let P(n) ≡ 1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`, for all n ∈ N

Step 1:

For n = 1

L.H.S. = 1.2 = 2

R.H.S. = `1/3(1 + 1)(1 + 2)` = 2

∴ L.H.S. = R.H.S. for n = 1

∴ P(1) is true.

Step 2:

Let us assume that for some k ∈ N, P(k) is true, 

i.e., 1.2 + 2.3 + 3.4 + ... + k(k + 1) = `"k"/3("k" + 1)("k" + 2)`  ...(1)

Step 3:

To prove that P(k + 1) is true,

i.e., to prove that

1.2 + 2.3 + 3.4 + ..... + k(k + 1) +(k + 1)(k + 2) = `(("k" + 1))/3("k" + 2)("k" + 3)`

Now, L.H.S. = 1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1)(k + 2)

= `"k"/3("k" + 1)("k" + 2) + ("k" + 1)("k" + 2)`  ...[By (1)]

= `("k" + 1)("k" + 2)("k"/3 + 1)`

= `(("k" + 1)("k" + 2)("k" + 3))/3`

= R.H.S.

∴ P(k + 1) is true.

Step 4:

From all the above steps and by the principle of mathematical induction, the result P(n) is true for all n ∈ N,

i.e., 1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`, for all n ∈ N.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [Page 73]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 6 | Page 73

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n(n + 1) is even", then what is P(3)?


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

32n+7 is divisible by 8 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×