Advertisements
Advertisements
Question
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Solution
Let P(n) ≡ 52n – 22n is divisible by 3, for all n ∈ N.
Step 1:
For n = 1, 52n – 22n = 52 – 22 = 25 – 4 = 21, which is divisible by 3.
∴ P(1) is true.
Step 2:
Let us assume that for some k ∈ N, P(k) is true, i.e. 52k – 22k is divisible by 3.
∴
∴ 52k – 22k = 3m
∴ 52k = 22k + 3m ...(1)
Step 3:
To prove that P(k + 1) is true, i.e., to prove that
Now,
= 52k .52 – 22k . 22
= (22k + 3m)25 – 22k . 4 ...[By (1)]
= 25(22k) + 75m – 4(22k)
= 21(22k) + 75m
= 3[7.22k + 25m]
∴
∴
∴ P(k + 1) is true.
Step 4:
From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,
i.e., 52n – 22n is divisible by 3, for all n ∈ N.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
Given an example of a statement P (n) such that it is true for all n ∈ N.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms =
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove, by method of induction, for all n ∈ N
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk =
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ =
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.