English

Prove the statement by using the Principle of Mathematical Induction: n(n2 + 5) is divisible by 6, for each natural number n. - Mathematics

Advertisements
Advertisements

Question

Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.

Theorem

Solution

P(n) = n(n2 + 5) is divisible by 6.

So, substituting different values for n, we get,

P(0) = 0(02 + 5) = 0 Which is divisible by 6.

P(1) = 1(12 + 5) = 6 Which is divisible by 6.

P(2) = 2(22 + 5) = 18 Which is divisible by 6.

P(3) = 3(32 + 5) = 42 Which is divisible by 6.

Let P(k) = k(k2 + 5) be divisible by 6.

So, we get,

⇒ k(k2 + 5) = 6x

Now, we also get that,

⇒ P(k + 1) = (k + 1)((k + 1)2 + 5) = (k + 1)(k2 + 2k + 6)

= k3 + 3k2 + 8k + 6

= 6x + 3k2 +3k + 6

= 6x + 3k(k + 1) + 6[n(n + 1) is always even and divisible by 2]

= 6x + 3 × 2y + 6 Which is divisible by 6.

⇒ P(k + 1) is true when P(k) is true.

Therefore, by Mathematical Induction,

P(n) = n(n2 + 5) is divisible by 6, for each natural number n.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Exercise [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Exercise | Q 10 | Page 71

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

52n −1 is divisible by 24 for all n ∈ N.


32n+7 is divisible by 8 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×