Advertisements
Advertisements
Question
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Solution
P(n) = n(n2 + 5) is divisible by 6.
So, substituting different values for n, we get,
P(0) = 0(02 + 5) = 0 Which is divisible by 6.
P(1) = 1(12 + 5) = 6 Which is divisible by 6.
P(2) = 2(22 + 5) = 18 Which is divisible by 6.
P(3) = 3(32 + 5) = 42 Which is divisible by 6.
Let P(k) = k(k2 + 5) be divisible by 6.
So, we get,
⇒ k(k2 + 5) = 6x
Now, we also get that,
⇒ P(k + 1) = (k + 1)((k + 1)2 + 5) = (k + 1)(k2 + 2k + 6)
= k3 + 3k2 + 8k + 6
= 6x + 3k2 +3k + 6
= 6x + 3k(k + 1) + 6[n(n + 1) is always even and divisible by 2]
= 6x + 3 × 2y + 6 Which is divisible by 6.
⇒ P(k + 1) is true when P(k) is true.
Therefore, by Mathematical Induction,
P(n) = n(n2 + 5) is divisible by 6, for each natural number n.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
Given an example of a statement P (n) such that it is true for all n ∈ N.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
32n+7 is divisible by 8 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.