English

Prove that Cos α + Cos ( α + β ) + Cos ( α + 2 β ) + . . . + Cos [ α + ( N − 1 ) β ] = Cos { α + ( N − 1 2 ) β } Sin ( N β 2 ) Sin ( β 2 ) for All N ∈ N - Mathematics

Advertisements
Advertisements

Question

\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 

Solution

\[\text{ Let p } \left( n \right): \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \forall n \in  N . \] 

\[\text{ Step I: For }  n = 1, \]

\[LHS = \cos\left[ \alpha + \left( 1 - 1 \right)\beta \right] = \cos\alpha\]

\[RHS = \frac{\cos\left\{ \alpha + \left( \frac{1 - 1}{2} \right)\beta \right\}\sin\left( \frac{\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} = \cos\alpha\]

\[\text{ As, LHS = RHS } \]

\[\text{ So, it is true for n = 1 .}  \]

\[\text{ Step II: For n = k,}  \]

\[ \text{ Let } p\left( k \right): \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( k - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ be true  } \forall k \in N . \]

\[\text{ Step III: For n  } = k + 1, \]

\[LHS = \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( k - 1 \right)\beta \right] + \cos\left[ \alpha + \left( k + 1 - 1 \right)\beta \right]\]

\[ = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} + \cos\left( \alpha + k\beta \right)\]

\[ = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right) + \sin\left( \frac{\beta}{2} \right)\cos\left( \alpha + k\beta \right)}{\sin\left( \frac{\beta}{2} \right)}\]

\[ = \frac{\sin\left( \alpha + k\beta - \frac{\beta}{2} \right) - \sin\left( \alpha - \frac{\beta}{2} \right) + \sin\left( \alpha + k\beta + \frac{\beta}{2} \right) - \sin\left( \alpha + k\beta - \frac{\beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]

\[ = \frac{- \sin\left( \alpha - \frac{\beta}{2} \right) + \sin\left( \alpha + k\beta + \frac{\beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]

\[ = \frac{2\cos\left( \frac{2\alpha + k\beta}{2} \right)\sin\left( \frac{k\beta + \beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]

\[ = \frac{\cos\left( \alpha + \frac{k\beta}{2} \right)\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]

\[RHS = \frac{\cos\left\{ \alpha + \left( \frac{k + 1 - 1}{2} \right)\beta \right\}\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]

\[ = \frac{\cos\left( \alpha + \frac{k\beta}{2} \right)\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]

\[As, LHS = RHS\]

\[\text{ So, it is also true for n = k + 1 .} \]

\[\text{ Hence,}  \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all } n \in N .\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 40 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×