Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let p } \left( n \right): \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \forall n \in N . \]
\[\text{ Step I: For } n = 1, \]
\[LHS = \cos\left[ \alpha + \left( 1 - 1 \right)\beta \right] = \cos\alpha\]
\[RHS = \frac{\cos\left\{ \alpha + \left( \frac{1 - 1}{2} \right)\beta \right\}\sin\left( \frac{\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} = \cos\alpha\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n = 1 .} \]
\[\text{ Step II: For n = k,} \]
\[ \text{ Let } p\left( k \right): \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( k - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ be true } \forall k \in N . \]
\[\text{ Step III: For n } = k + 1, \]
\[LHS = \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( k - 1 \right)\beta \right] + \cos\left[ \alpha + \left( k + 1 - 1 \right)\beta \right]\]
\[ = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} + \cos\left( \alpha + k\beta \right)\]
\[ = \frac{\cos\left\{ \alpha + \left( \frac{k - 1}{2} \right)\beta \right\}\sin\left( \frac{k\beta}{2} \right) + \sin\left( \frac{\beta}{2} \right)\cos\left( \alpha + k\beta \right)}{\sin\left( \frac{\beta}{2} \right)}\]
\[ = \frac{\sin\left( \alpha + k\beta - \frac{\beta}{2} \right) - \sin\left( \alpha - \frac{\beta}{2} \right) + \sin\left( \alpha + k\beta + \frac{\beta}{2} \right) - \sin\left( \alpha + k\beta - \frac{\beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]
\[ = \frac{- \sin\left( \alpha - \frac{\beta}{2} \right) + \sin\left( \alpha + k\beta + \frac{\beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]
\[ = \frac{2\cos\left( \frac{2\alpha + k\beta}{2} \right)\sin\left( \frac{k\beta + \beta}{2} \right)}{2\sin\left( \frac{\beta}{2} \right)}\]
\[ = \frac{\cos\left( \alpha + \frac{k\beta}{2} \right)\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]
\[RHS = \frac{\cos\left\{ \alpha + \left( \frac{k + 1 - 1}{2} \right)\beta \right\}\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]
\[ = \frac{\cos\left( \alpha + \frac{k\beta}{2} \right)\sin\left( \frac{\left( k + 1 \right)\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)}\]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n = k + 1 .} \]
\[\text{ Hence,} \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all } n \in N .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.