मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove by method of induction, for all n ∈ N: 13.5+15.7+17.9+... to n terms = n3(2n+3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`

बेरीज

उत्तर

Let P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`, for all n ∈ N

But the first factor in each term of the denominator

i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.

∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n + 1)

Also, second factor in each term of denominator

i.e., 5, 7, 9, … are in A.P. with a = 5 and d = 2.

∴ nth term = a + (n – 1)d = 5 + (n – 1)2 = (2n + 3)

∴ nth term tn = `1/((2"n" + 1)(2"n" + 3))`

∴ P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...  + 1/((2"n" + 1)(2"n" + 3)) = "n"/(3(2"n" + 3))`

Step I:

Put n = 1

L.H.S. = `1/(3.5) = 1/15`

R.H.S. = `1/(3[2(1) + 3]) = 1/(3(2 + 3)) = 1/15` = L.H.S.

∴ P(n) is true for n = 1

Step II:

Let us consider that P(n) is true for n = k

∴  `1/(3.5) + 1/(5.7) + 1/(7.9) + ...  + 1/((2"k" + 1).(2"k" + 3)) = "k"/(3(2"k" + 3))`   ...(i)

Step III:

We have to prove that P(n) is true for n = k + 1

i.e., to prove that

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...  + 1/((2"k" + 3).(2"k" + 5)) = ("k" + 1)/(3(2"k" + 5))` 

L.H.S. = `1/(3.5) + 1/(5.7) + 1/(7.9) + ...  + 1/((2"k" + 3)(2"k" + 5))` 

= `1/(3.5) + 1/(5.7) + 1/(7.9) + ...  + 1/((2"k" + 1)(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))`

= `"k"/(3(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))` ...[From (i)]

= `("k"(2"k" + 5) + 3)/(3(2"k" + 3)(2"k" + 5))`

= `(2"k"^2 + 5"k" + 3)/(3(2"k" + 3)(2"k" + 5))`

= `(2"k"^2 + 2"k" + 3"k" + 3)/(3(2"k" + 3)(2"k" + 5)`

= `(2"k"("k" + 1) + 3("k" + 1))/(3(2"k" + 3)(2"k" + 5))`

= `((2"k" + 3)("k" + 1))/(3("2k" + 3)(2"k" + 5))`

= `("k" + 1)/(3(2"k" + 5))`

= R.H.S.

∴ P(n) is true for n = k + 1

Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

∴ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))` for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [पृष्ठ ७४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 9 | पृष्ठ ७४

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n −1 is divisible by 24 for all n ∈ N.


72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×