Advertisements
Advertisements
प्रश्न
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
उत्तर
Let P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`, for all n ∈ N
But the first factor in each term of the denominator
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n + 1)
Also, second factor in each term of denominator
i.e., 5, 7, 9, … are in A.P. with a = 5 and d = 2.
∴ nth term = a + (n – 1)d = 5 + (n – 1)2 = (2n + 3)
∴ nth term tn = `1/((2"n" + 1)(2"n" + 3))`
∴ P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"n" + 1)(2"n" + 3)) = "n"/(3(2"n" + 3))`
Step I:
Put n = 1
L.H.S. = `1/(3.5) = 1/15`
R.H.S. = `1/(3[2(1) + 3]) = 1/(3(2 + 3)) = 1/15` = L.H.S.
∴ P(n) is true for n = 1
Step II:
Let us consider that P(n) is true for n = k
∴ `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 1).(2"k" + 3)) = "k"/(3(2"k" + 3))` ...(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
`1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 3).(2"k" + 5)) = ("k" + 1)/(3(2"k" + 5))`
L.H.S. = `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 3)(2"k" + 5))`
= `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 1)(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))`
= `"k"/(3(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))` ...[From (i)]
= `("k"(2"k" + 5) + 3)/(3(2"k" + 3)(2"k" + 5))`
= `(2"k"^2 + 5"k" + 3)/(3(2"k" + 3)(2"k" + 5))`
= `(2"k"^2 + 2"k" + 3"k" + 3)/(3(2"k" + 3)(2"k" + 5)`
= `(2"k"("k" + 1) + 3("k" + 1))/(3(2"k" + 3)(2"k" + 5))`
= `((2"k" + 3)("k" + 1))/(3("2k" + 3)(2"k" + 5))`
= `("k" + 1)/(3(2"k" + 5))`
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))` for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
52n −1 is divisible by 24 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.