मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove by method of induction, for all n ∈ N: 12 + 32 + 52 + .... + (2n − 1)2 = n3(2n−1)(2n+1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`

बेरीज

उत्तर

Let P(n) ≡ 12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`, for all n ∈ N

Step I:

Put n = 1

L.H.S. = 12 = 1

R.H.S. = `1/3[2(1) - 1][(2(1) + 1)]` = 1

= L.H.S.

∴ P(n) is true for n = 1

Step II:

Let us consider that P(n) is true for n = k

∴ 12 + 32 + 52 + .... + (2k − 1)2

= `"k"/3(2"k" - 1) (2"k" + 1)`   ...(i)

Step III:

We have to prove that P(n) is true for n = k + 1

i.e., to prove that

12 + 32 + 52 + …. + [2(k + 1) − 1]2

= `(("k" + 1))/3[2("k" + 1) - 1][2("k" + 1) + 1]`

= `(("k" + 1)(2"k" + 1)(2"k" + 3))/3`

L.H.S. = 12 + 32 + 52 + …. + [2(k + 1) − 1]2 

= 12 + 32 + 52 + …. + (2k − 1)2 + (2k + 1)2

= `"k"/3(2"k" - 1)(2"k" + 1) + (2"k" + 1)^2`   ...[From (i)]

= `(2"k" + 1)[("k"(2"k" - 1))/3 + (2"k" + 1)]`

= `(2"k" + 1)[(2"k"^2 - "k" + 6"k" + 3)/3]`

= `((2"k" + 1))/3(2"k"^2 + 2"k" + 3"k" + 3)`

= `((2"k" + 1))/3[2"k"("k" + 1) + 3("k" + 1)]`

= `((2"k" + 1)("k" + 1)(2"k" + 3))/3`

= R.H.S.

∴ P(n) is true for n = k + 1

Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

∴ 12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`, for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [पृष्ठ ७३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 4 | पृष्ठ ७३

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n −1 is divisible by 24 for all n ∈ N.


32n+7 is divisible by 8 for all n ∈ N.

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×