मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove by method of induction, for all n ∈ N: 13 + 33 + 53 + .... to n terms = n2(2n2 − 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)

बेरीज

उत्तर

Let P(n) ≡ 13 + 33 + 53 + .... to n terms = n2(2n2 − 1), for all n ∈ N

But 1, 3, 5, …… are in A.P.

∴ a = 1, d = 2 

Let tn be the nth term

∴ tn = a + (n − 1)d = 1 + (n − 1)2 = 2n − 1

∴ P(n) ≡ 13 + 33 + 53 + …. + (2n − 1)3 = n2(2n2 − 1)

Step I:

Put n = 1

L.H.S. = 13 = 1

R.H.S. = 12 [2(1)2 − 1] = 1 = L.H.S.

∴ P(n) is true for n = 1.

Step II:

Let us consider that P(n) is true for n = k

∴ 13 + 33 + 53 + … + (2k − 1)3 = k2(2k2 − 1)  …(i)

Step III:

We have to prove that P(n) is true for n = k + 1

i.e., to prove that

13 + 33 + 53 + .… + [2(k + 1) − 1]3

= (k + 1)2 [2(k + 1)2 – 1]

= (k2 + 2k + 1) (2k2 + 4k + 1)

L.H.S. = 13 + 33 + 53 + .… + [2(k + 1) − 1]

= 13 + 33 + 53 + … + (2k − 1)3 + (2k + 1)3

= k2 (2k2 − 1) + (2k + 1)3   …[From (i)]

= 2k4 − k2 + 8k3 + 12k2 + 6k + 1

= 2k4 + 8k3 + 11k2 + 6k + 1

= 2k2 (k2 + 2k + 1) + 4k3 + 9k2 + 6k + 1

= 2k2 (k2 + 2k + 1)+ 4k (k2 + 2k + 1) + (k2 + 2k + 1)

= (k2 + 2k + 1) (2k2 + 4k + 1)

= R.H.S.

∴ P(n) is true for n = k + 1

Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

∴ 13 + 33 + 53 + .... to n terms = n2(2n2 − 1) for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [पृष्ठ ७३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 5 | पृष्ठ ७३

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


(ab)n = anbn for all n ∈ N. 

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×