Advertisements
Advertisements
प्रश्न
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
उत्तर
Let P(n) ≡ 13 + 33 + 53 + .... to n terms = n2(2n2 − 1), for all n ∈ N
But 1, 3, 5, …… are in A.P.
∴ a = 1, d = 2
Let tn be the nth term
∴ tn = a + (n − 1)d = 1 + (n − 1)2 = 2n − 1
∴ P(n) ≡ 13 + 33 + 53 + …. + (2n − 1)3 = n2(2n2 − 1)
Step I:
Put n = 1
L.H.S. = 13 = 1
R.H.S. = 12 [2(1)2 − 1] = 1 = L.H.S.
∴ P(n) is true for n = 1.
Step II:
Let us consider that P(n) is true for n = k
∴ 13 + 33 + 53 + … + (2k − 1)3 = k2(2k2 − 1) …(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
13 + 33 + 53 + .… + [2(k + 1) − 1]3
= (k + 1)2 [2(k + 1)2 – 1]
= (k2 + 2k + 1) (2k2 + 4k + 1)
L.H.S. = 13 + 33 + 53 + .… + [2(k + 1) − 1]3
= 13 + 33 + 53 + … + (2k − 1)3 + (2k + 1)3
= k2 (2k2 − 1) + (2k + 1)3 …[From (i)]
= 2k4 − k2 + 8k3 + 12k2 + 6k + 1
= 2k4 + 8k3 + 11k2 + 6k + 1
= 2k2 (k2 + 2k + 1) + 4k3 + 9k2 + 6k + 1
= 2k2 (k2 + 2k + 1)+ 4k (k2 + 2k + 1) + (k2 + 2k + 1)
= (k2 + 2k + 1) (2k2 + 4k + 1)
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 13 + 33 + 53 + .... to n terms = n2(2n2 − 1) for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
(ab)n = anbn for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?