Advertisements
Advertisements
प्रश्न
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
उत्तर
\[\text{ Let } : \]
\[P\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step } I \]
\[P(1): \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} (\text{ which is true } )\]
\[P(2): \left( \frac{a_2 - \sqrt{A}}{a_2 + \sqrt{A}} \right) = \left( \frac{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) - \sqrt{A}}{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) + \sqrt{A}} \right) = \left( \frac{a_1 + \frac{A}{a_1} - 2\sqrt{A}}{a_1 + \frac{A}{a_1} + 2\sqrt{A}} \right) = \left( \frac{a_1 + A - 2\sqrt{A}}{a_1 + A + 2\sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{2 - 1}} \]
\[\text{ Thus, P(1) and P(2) are true } . \]
\[\text{ Step } II \]
\[\text{ Let P(k) be true } . \]
\[\text{ Now, } \]
\[\frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} . . . . . (i)\]
\[\text{ and } \]
\[P(k + 1): \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}} = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\left( a_k + \frac{A}{a_k} \right) - 2\sqrt{A}}{\left( a_k + \frac{A}{a_k} \right) + 2\sqrt{A}}\]
\[ = \frac{\left( \sqrt{a_k} - \sqrt{\frac{A}{a_k}} \right)^2}{\left( \sqrt{a_k} + \sqrt{\frac{A}{a_k}} \right)^2}\]
\[ = \left( \frac{\sqrt{a_k} - \sqrt{\frac{A}{a_k}}}{\sqrt{a_k} + \sqrt{\frac{A}{a_k}}} \right)^2 \]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^\left( k + 1 \right) - 1} \]
\[\text{ Thus, P(k + 1) is also true .} \]
\[= \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}}}{\left( a_k + \sqrt{A} \right)^2} \left[ \text{ Using } (i) \right]\]
\[ = \frac{\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{\left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^\left( 2^{k - 1} + 1 \right) \]
\[ = \left( \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right)^\left( 2^{k - 1} + 1 \right) \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?