Advertisements
Advertisements
प्रश्न
उत्तर
Let P(n) be the given statement.
Now,
\[P(n): \frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n \text{ is a positive integer .} \]
\[\text{ Step 1:} \]
\[P(1) = \frac{1}{7} + \frac{1}{5} + \frac{1}{3} + \frac{1}{2} - \frac{37}{210} = \frac{30 + 42 + 70 + 105 - 37}{210} = \frac{210}{210} = 1 \]
\[\text{ It is a positive integer .} \]
\[\text{ Thus, P(1) is true } . \]
\[\text{ Step } 2: \]
\[\text{ Let P(m) be true } . \]
\[\text{ Then } , \frac{m^7}{7} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{m^2}{2} - \frac{37}{210}m \text{ is a positive integer } . \]
\[Let \frac{m^7}{7} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{m^2}{2} - \frac{37}{210}m = \lambda \text{ for some } \lambda \in \text{ positive } N . \]
\[\text{ To show: } P\left( m + 1 \right) \text { is a positive integer } . \]
\[\text{ Now } , \]
\[P(m + 1) = \frac{\left( m + 1 \right)^7}{7} + \frac{\left( m + 1 \right)^5}{5} + \frac{\left( m + 1 \right)^3}{3} + \frac{\left( m + 1 \right)^2}{2} - \frac{37}{210}\left( m + 1 \right)\]
\[ = \frac{1}{7}\left( m^7 + 7 m^6 + 21 m^5 + 35 m^4 + 35 m^3 + 21 m^2 + 7m + 1 \right)\]
\[ + \frac{1}{5}\left( m^5 + 5 m^4 + 10 m^3 + 10 m^2 + 5m + 1 \right) + \frac{1}{3}\left( m^3 + 3 m^2 + 3m + 1 \right) + \frac{1}{2}\left( m^2 + 2m + 1 \right) - \frac{37}{210}m - \frac{37}{210} \]
\[ = \left[ \frac{m^7}{7} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{m^2}{2} - \frac{37}{210}m \right] + m^6 + 3 m^5 + 6 m^4 + 7 m^3 + 6 m^2 + 4m\]
\[ = \lambda + m^6 + 3 m^5 + 6 m^4 + 7 m^3 + 6 m^2 + 4m\]
\[\text{ It is a positive integer, as \lambda is a positive integer } . \]
\[\text{ Thus } , P\left( m + 1 \right) \text{ is true } , \]
\[\text{ By the principle of mathematical induction, P(n) is true for all } n \in N . \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.