हिंदी

Answer the following: Prove, by method of induction, for all n ∈ N 2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 

योग

उत्तर

Let P(n) ≡ 2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n-1 = n.2n, for all n ∈ N

Step I:

Put n = 1

L.H.S. = 2

R.H.S. = 1(21) = 2 = L.H.S.

∴ P(n) is true for n = 1

Step II:

Let us consider that P(n) is true for n = k

∴ 2 + 3.2 + 4.22 + … + (k + 1)2k–1 = k.2k  …(i)

Step III:

We have to prove that P(n) is true for n = k + 1

i.e., to prove that

2 + 3.2 + 4.22 + …. + (k + 2)2k = (k + 1)2k+1

L.H.S. = 2 + 3.2 + 4.22 + …. + (k + 2)2k

= 2 + 3.2 + 4.22 + …. + (k + 1)2k–1 + (k + 2)2k

= k.2k + (k + 2).2k …[From (i)]

= (k + k + 2).2k  

= (2k + 2). 2k

= (k + 1).2.2k

= (k + 1). 2k+1

= R.H.S.

∴ P(n) is true for n = k + 1

Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Methods of Induction and Binomial Theorem - Miscellaneous Exercise 4.2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Methods of Induction and Binomial Theorem
Miscellaneous Exercise 4.2 | Q II. (1) (iii) | पृष्ठ ८५

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×