हिंदी

1 2 + 1 4 + 1 8 + . . . + 1 2 N = 1 − 1 2 N - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]

उत्तर

Let P(n) be the given statement.
Now,

\[P(n): \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]

\[\text{ Step } 1: \]

\[ P(1) = \frac{1}{2} = 1 - \frac{1}{2^1}\]

\[\text{ Thus, P(1) is true .}  \]

\[\text{ Step 2: } \]

\[\text{ Suppose P(m) is true .}  \]

\[\text{ Then,}  \]

\[\frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{2^m} = 1 - \frac{1}{2^m}\]

\[\text{ To show: P(m + 1) is true whenever P(m) is true } . \]

\[\text{ That is, } \]

\[\frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{2^{{}^{m + 1}}} = 1 - \frac{1}{2^{m + 1}}\]

\[\text{ Now, P(m) is true } . \]

\[\text{ Thus, we have: } \]

\[\frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{2^m} = 1 - \frac{1}{2^m}\]

\[ \Rightarrow \frac{1}{2} + \frac{1}{4} + . . . + \frac{1}{2^m} + \frac{1}{2^{m + 1}} = 1 - \frac{1}{2^m} + \frac{1}{2^{m + 1}} \left[ \text{ Adding } \frac{1}{2^{m + 1}} \text{ to both sides } \right]\]

\[ \Rightarrow P(m + 1) = 1 - \frac{1}{2^m} + \frac{1}{2^m . 2} = 1 - \frac{1}{2^{{}^m}}\left( 1 - \frac{1}{2} \right) = 1 - \frac{1}{2^{m + 1}}\]

Thus , P ( m + 1) is true 

$By the principle of mathematical induction, P(n) is true for all n ∈  N .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 15 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×