हिंदी

12 + 22 + 32 + ... + N2 = N ( N + 1 ) ( 2 N + 1 ) 6 . - Mathematics

Advertisements
Advertisements

प्रश्न

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

उत्तर

Let P(n) be the given statement.
Now,

\[P(n) = 1^2 + 2^2 + 3^2 + . . . + n^2 = \frac{n(n + 1)(2n + 1)}{6}\]

\[\text{ Step } 1: \]

\[P(1) = 1^2 = \frac{1(1 + 1)(2 + 1)}{6} = \frac{6}{6} = 1\]

\[\text{ Hence, P(1) is true}  . \]

\[\text{ Step } 2: \]

\[\text{ Let P(m) be true .}  \]

\[\text{ Then,}  \]

\[ 1^2 + 2^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]

\[\text{ We shall now prove that P(m + 1) is true}  . \]

\[i . e . , \]

\[ 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]

\[ \text{ Now } , \]

\[P(m) = 1^2 + 2^2 + 3^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]

\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + m^2 + (m + 1 )^2 = \frac{m(m + 1)(2m + 1)}{6} + (m + 1 )^2 \left[ \text{ Adding}  (m + 1 )^2 \text{ to both sides}  \right]\]

\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{m(m + 1)(2m + 1) + 6(m + 1 )^2}{6} = \frac{(m + 1)(2 m^2 + m + 6m + 6)}{6} = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]

\[\text{ Hence, P(m + 1) is true } . \]

\[\text{ By the principle of mathematical induction, the given statement is true for all n } \in N .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 2 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+7 is divisible by 8 for all n ∈ N.

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×