Advertisements
Advertisements
प्रश्न
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
उत्तर
Let P(n) be the given statement.
Now,
\[P(n) = 1^2 + 2^2 + 3^2 + . . . + n^2 = \frac{n(n + 1)(2n + 1)}{6}\]
\[\text{ Step } 1: \]
\[P(1) = 1^2 = \frac{1(1 + 1)(2 + 1)}{6} = \frac{6}{6} = 1\]
\[\text{ Hence, P(1) is true} . \]
\[\text{ Step } 2: \]
\[\text{ Let P(m) be true .} \]
\[\text{ Then,} \]
\[ 1^2 + 2^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]
\[\text{ We shall now prove that P(m + 1) is true} . \]
\[i . e . , \]
\[ 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]
\[ \text{ Now } , \]
\[P(m) = 1^2 + 2^2 + 3^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]
\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + m^2 + (m + 1 )^2 = \frac{m(m + 1)(2m + 1)}{6} + (m + 1 )^2 \left[ \text{ Adding} (m + 1 )^2 \text{ to both sides} \right]\]
\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{m(m + 1)(2m + 1) + 6(m + 1 )^2}{6} = \frac{(m + 1)(2 m^2 + m + 6m + 6)}{6} = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]
\[\text{ Hence, P(m + 1) is true } . \]
\[\text{ By the principle of mathematical induction, the given statement is true for all n } \in N .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
32n+7 is divisible by 8 for all n ∈ N.
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?