हिंदी

( 2 N ) ! 2 2 N ( N ! ) 2 ≤ 1 √ 3 N + 1 for All N ∈ N . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .

उत्तर

Let P(n) be the given statement.
Thus, we have .

\[P\left( n \right): \frac{\left( 2n \right)!}{2^{2n} \left( n! \right)^2} \leq \frac{1}{\sqrt{3n + 1}}\]

\[\text{ Step1} : \]

\[P(1): \frac{2!}{2^2 . 1} = \frac{1}{2} \leq \frac{1}{\sqrt{3 + 1}}\]

\[\text{ Thus, P(1) is true}  . \]

\[\text{ Step2: }  \]

\[\text{ Let P(m) be true .}  \]

\[\text{ Thus, we have: } \]

\[\frac{\left( 2m \right)!}{2^{2m} \left( m! \right)^2} \leq \frac{1}{\sqrt{3m + 1}}\]

\[\text{ We need to prove that P(m + 1) is true .} \]

Now,

\[P(m + 1): \]

\[\frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} = \frac{\left( 2m + 2 \right)\left( 2m + 1 \right)\left( 2m \right)!}{2^{2m} . 2^2 \left( m + 1 \right)^2 \left( m! \right)^2}\]

\[ \Rightarrow \frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} \leq \frac{\left( 2m \right)!}{2^{2m} \left( m! \right)^2} \times \frac{\left( 2m + 2 \right)\left( 2m + 1 \right)}{2^2 \left( m + 1 \right)^2}\]

\[ \Rightarrow \frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} \leq \frac{2m + 1}{2\left( m + 1 \right)\sqrt{3m + 1}}\]

\[\Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{\left( 2m + 1 \right)^2}{4 \left( m + 1 \right)^2 \left( 3m + 1 \right)}}\]

\[ \Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{\left( 4 m^2 + 4m + 1 \right) \times \left( 3m + 4 \right)}{4\left( 3 m^3 + 7 m^2 + 5m + 1 \right)\left( 3m + 4 \right)}}\]

\[ \Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{12 m^3 + 28 m^2 + 19m + 4}{\left( 12 m^3 + 28 m^2 + 20m + 4 \right)\left( 3m + 4 \right)}}\]

\[ \because \frac{12 m^3 + 28 m^2 + 19m + 4}{\left( 12 m^3 + 28 m^2 + 20m + 4 \right)} < 1\]

\[ \therefore \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} < \frac{1}{\sqrt{3m + 4}}\]

Thus, P(m + 1) is true.
Hence, by mathematical induction

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] is true for all n ∈ N

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 36 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "n(n + 1) is even", then what is P(3)?


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×