हिंदी

Prove that the Number of Subsets of a Set Containing N Distinct Elements is 2n, for All N ∈ N . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

उत्तर

\[\text{ Let the given statement be defined as }  P\left( n \right): \text {The number of subsets of a set containing n distinct elements }  = 2^n ,\text{  for all n }  \in N . \]

\[\text{ Step I: For n  } = 1, \]

\[\text { LHS = As, the subsets of a set containing only 1 element are: } \phi \text{ and the set itself } . \]

\[\text{ i . e . the number of subsets of a set containing only 1 element } = 2\]

\[\text{ RHS }  = 2^1 = 2\]

\[\text{ As, LHS = RHS } \]

\[\text{ So, it is true for n } = 1 . \]

\[\text{ Step II: For n = k } , \]

\[\text{ Let } P\left( k \right): \text{ The number of subsets of a set containing k distinct elements } = 2^k , \text{ be true for some k }  \in N . \]

\[\text{ Step III: For n } = k + 1, \]

\[P\left( k + 1 \right): \]

\[\text{ Let } A = \left\{ a_1 , a_2 , a_3 , . . . , a_k , b \right\} \text{ so that A has } \left( k + 1 \right) \text{ elements .}  \]

\[\text{ So, the subset of A can be divided into two collections; first contains subsets of A which don't have b in them and } \]

\[ \text{ the second contains subsets of A which do have b in them } . \]

\[i . e . \]

\[\text{ First collection: }  \left\{ \right\}, \left\{ a_1 \right\}, \left\{ a_1 , a_2 \right\}, \left\{ a_1 , a_2 , a_3 \right\}, . . . , \left\{ a_1 , a_2 , a_3 , . . . , a_k \right\} \text{ and } \]

\[\text { Second collection } : \left\{ b \right\}, \left\{ a_1 , b \right\}, \left\{ a_1 , a_2 , \right\}, \left\{ a_1 , a_2 , a_3 , b \right\}, . . . , \left\{ a_1 , a_2 , a_3 , . . . , a_k , b \right\}\]

\[\text{ It can be clearly seen that:  } \]

\[\text{ The number of subsets of A in first collection = The number of subsets of set with k elements i . e } . \left\{ a_1 , a_2 , a_3 , . . . , a_k \right\} = 2^k \left( \text{ Using step II } \right)\]

\[\text{ Also, it follows that the second collection must have the same number of the subsets as that of the first } = 2^k \]

\[\text{ So, the total number of subsets of  } A = 2^k + 2^k = 2 \times 2^k = 2^{k + 1} .\]

Hence, the number of subsets of a set containing n distinct elements is 2n , for all n \[\in\] N .

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 45 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

If P (n) is the statement "n(n + 1) is even", then what is P(3)?


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

Given an example of a statement P (n) such that it is true for all n ∈ N.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


(ab)n = anbn for all n ∈ N. 

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×