मराठी

Prove that the Number of Subsets of a Set Containing N Distinct Elements is 2n, for All N ∈ N . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

उत्तर

\[\text{ Let the given statement be defined as }  P\left( n \right): \text {The number of subsets of a set containing n distinct elements }  = 2^n ,\text{  for all n }  \in N . \]

\[\text{ Step I: For n  } = 1, \]

\[\text { LHS = As, the subsets of a set containing only 1 element are: } \phi \text{ and the set itself } . \]

\[\text{ i . e . the number of subsets of a set containing only 1 element } = 2\]

\[\text{ RHS }  = 2^1 = 2\]

\[\text{ As, LHS = RHS } \]

\[\text{ So, it is true for n } = 1 . \]

\[\text{ Step II: For n = k } , \]

\[\text{ Let } P\left( k \right): \text{ The number of subsets of a set containing k distinct elements } = 2^k , \text{ be true for some k }  \in N . \]

\[\text{ Step III: For n } = k + 1, \]

\[P\left( k + 1 \right): \]

\[\text{ Let } A = \left\{ a_1 , a_2 , a_3 , . . . , a_k , b \right\} \text{ so that A has } \left( k + 1 \right) \text{ elements .}  \]

\[\text{ So, the subset of A can be divided into two collections; first contains subsets of A which don't have b in them and } \]

\[ \text{ the second contains subsets of A which do have b in them } . \]

\[i . e . \]

\[\text{ First collection: }  \left\{ \right\}, \left\{ a_1 \right\}, \left\{ a_1 , a_2 \right\}, \left\{ a_1 , a_2 , a_3 \right\}, . . . , \left\{ a_1 , a_2 , a_3 , . . . , a_k \right\} \text{ and } \]

\[\text { Second collection } : \left\{ b \right\}, \left\{ a_1 , b \right\}, \left\{ a_1 , a_2 , \right\}, \left\{ a_1 , a_2 , a_3 , b \right\}, . . . , \left\{ a_1 , a_2 , a_3 , . . . , a_k , b \right\}\]

\[\text{ It can be clearly seen that:  } \]

\[\text{ The number of subsets of A in first collection = The number of subsets of set with k elements i . e } . \left\{ a_1 , a_2 , a_3 , . . . , a_k \right\} = 2^k \left( \text{ Using step II } \right)\]

\[\text{ Also, it follows that the second collection must have the same number of the subsets as that of the first } = 2^k \]

\[\text{ So, the total number of subsets of  } A = 2^k + 2^k = 2 \times 2^k = 2^{k + 1} .\]

Hence, the number of subsets of a set containing n distinct elements is 2n , for all n \[\in\] N .

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 45 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


32n+7 is divisible by 8 for all n ∈ N.

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×