मराठी

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) = N ( 4 N 2 + 6 N − 1 ) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

उत्तर

Let P(n) be the given statement.
Now,

\[P(n) = 1 . 3 + 3 . 5 + 5 . 7 + . . . + (2n - 1)(2n + 1) = \frac{n(4 n^2 + 6n - 1)}{3}\]

\[\text{ Step }  1: \]

\[P(1) = 1 . 3 = 3 = \frac{1(4 \times \left( 1 \right)^2 + 6 \times 1 - 1)}{3}\]

\[\text{ Hence, P(1) is true }  . \]

\[\text{ Step 2: }  \]

\[\text{ Let P(m) be true} . \]

\[\text{ Then,}  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[\text{ To prove: P(m + 1) is true}  . \]

\[\text{ That is, }  \]

\[1 . 3 + 3 . 5 + . . . + (2m + 1)(2m + 3) = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[ \text{ Now, P(m) is equal to: }  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[ \Rightarrow 1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) + (2m + 1)(2m + 3) = \frac{m(4 m^2 + 6m - 1)}{3} + (2m + 1)(2m + 3) \left[ \text{ Adding } (2m + 1)(2m + 3) \text{ to both sides }  \right]\]

\[ \Rightarrow P(m + 1) = \frac{m(4 m^2 + 6m - 1) + 3(4 m^2 + 8m + 3)}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4 m^3 + 6 m^2 - m + 12 m^2 + 24m + 9}{3} = \frac{4 m^3 + 18 m^2 + 23m + 9}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4m( m^2 + 2m + 1) + 10 m^2 + 19m + 9}{3}\]

\[ = \frac{4m(m + 1 )^2 + (10m + 9)(m + 1)}{3}\]

\[ = \frac{(m + 1)\left[ 4m(m + 1) + 10m + 9 \right]}{3}\]

\[ = \frac{(m + 1)}{3}(4 m^2 + 8m + 4 + 6m + 5)\]

\[ = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[\text{ Thus, P(m + 1) is true .}  \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n}  \in N .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 13 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

(ab)n = anbn for all n ∈ N. 

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×